
FIRMGUIDE: Boosting the Capability of Rehosting
Embedded Linux Kernels through Model-Guided

Kernel Execution
Qiang Liu∗•, Cen Zhang†• , Lin Ma∗, Muhui Jiang‡∗, Yajin Zhou∗, Lei Wu∗? ,

Wenbo Shen∗, Xiapu Luo‡, Yang Liu†, Kui Ren∗
∗ Zhejiang University

† Nanyang Technological University
‡ The Hong Kong Polytechnic University

Abstract—Linux kernel is widely used in embedded systems.
To understand practical threats to the Linux kernel, we need
to perform dynamic analysis with a full-system emulator, e.g.,
QEMU. However, due to hardware fragmentation, e.g., various
types of peripherals, most embedded systems are not currently
supported by QEMU. Though some progress has been made on
rehosting firmware, it mainly focuses on user space programs or
simple real-time operating systems.

The goal of this work is to boost the capability of rehosting
the embedded Linux kernels in QEMU. By doing so, dynamic
analysis systems can be firstly applied on embedded Linux kernels
by leveraging off-the-shelf tools upon QEMU. Accordingly, we
proposed a new technique called model-guided kernel execution.
It combines the peripheral abstractions in the Linux kernel
and kernel-peripheral interactions to semi-automatically generate
peripheral models that are then used to synthesize new QEMU
virtual machines to start the dynamic analysis.

We have implemented a prototype called FirmGuide. It gen-
erates 9 peripheral models with full functionality and 64 with
minimum functionality covering 26 SoCs. Our evaluation with
6, 188 firmware images shows that it can successfully rehost
more than 95% of Linux kernels in 2 architectures and 22
versions. None of them can be rehosted in the vanilla QEMU.
The result of the LTP benchmark shows the reliability and
robustness of the rehosted Linux kernels. We further conduct
two security applications, i.e., vulnerability analysis and fuzzing,
on the rehosted Linux kernels to demonstrate the usage scenarios.

I. INTRODUCTION

With the proliferation of IoT (or embedded) devices in recent
years, the firmware (the software stack) of these devices has
become one of the most common attack targets [1–3]. Many of
them integrate the Linux kernel [4,5] in which vulnerabilities
are still discovered every year [6]. What’s worse, the device
vendors do not timely apply or backport security patches from
the mainstream to the firmware [7–9], exposing vulnerable
devices in the wild. Once being exploited, these devices can
be fully controlled by attackers.

Rehosting, also known as emulation, is used to load and
run the analysis target, e.g., the Linux kernel of the firmware,
inside an emulator (e.g., QEMU) and provides the capability
to introspect the runtime states of the target. After that,
various security analysis applications can be applied, e.g.,
vulnerability analysis and fuzzing. Running the Linux kernel

• The first two authors contributed equally to this work.
? Corresponding author, lei wu@zju.edu.cn.

of the desktop system in QEMU is not an issue. However,
embedded devices tend to use different types of system-on-
chips (SoCs) that are currently unsupported by QEMU. Hence,
it’s still an underdeveloped research problem to dynamically run
the embedded Linux kernels inside an emulated environment.

In this work, we focus on rehosting embedded Linux
kernels to lay the foundation of the dynamic analysis for
them. Though researchers have made progress in firmware
rehosting, these tools cannot serve our purpose. First, they
target user-space programs of the firmware, instead of the Linux
kernels [5,10–12]. For instance, FIRMADYNE [5] rehosts user-
space programs by using a customized Linux kernel that can
be loaded in QEMU. Since the loaded kernel is different from
the real one, it cannot be used to analyze the original Linux
kernel. Second, they pay attention to non-Linux kernels of
bare-metal systems [13–15], or leverage real hardware [16]
for analysis, which is not scalable in the context of the Linux
kernel. To the best of our knowledge, no system can rehost
the embedded Linux kernel on a large scale yet.

Rehosting the embedded Linux kernel is challenging. First,
the booting process depends on multiple peripherals. For
instance, after analyzing 1, 639 device tree blobs in the Linux
kernel, we found that each device has 32 peripherals on average.
Second, the same type of peripherals usually has different
hardware designs. There are thousands of peripherals supported
by the Linux kernel and it is impractical to implement them
one by one. Third, peripheral interfaces have semantic diversity.
A peripheral usually exposes several interfaces (hardware
registers) to the Linux kernel to control its inner states and
each register has its specific semantics. A successful rehosting
requires an understanding of these interfaces’ semantics. These
challenges make the manual rehosting of these peripherals a
tedious and error-prone task.

Our approach In this paper, we aim to boost the capability
of rehosting embedded Linux kernels in QEMU. By doing so,
existing dynamic analysis tools built upon QEMU can be easily
applied to analyze the embedded Linux kernels. We have three
observations to semi-automatically generate peripheral models.
• 1 Rehosting the Linux kernel only requires the full emulation

1

of a few peripherals (called Type-I peripherals in this
paper), e.g., Interrupt Controller and Timer are two Type-
I peripherals that require full functionality emulation. For
other peripherals (called Type-II peripherals in this paper),
we only need to emulate their minimum functionalities with
properly initialized values, such as Network Card and Flash.

• 2 The Linux kernel has well-defined abstractions for
different types of peripherals. For instance, the Linux kernel
interrupt subsystem abstracts common actions of the Interrupt
Controller and defines these actions as callback functions
for low-level device drivers to register. There is a similar
design for the Linux kernel time subsystem and the Timer
peripherals.

• 3 The well-defined abstractions and kernel-peripheral inter-
actions together can describe the peripheral interfaces. For
instance, the interrupt subsystem draws the inner states of
the Interrupt Controller. If we can use kernel-peripheral
interactions to identify which callback function is executed,
we can then transit the inner states properly.
Subsequently, we propose a new technique called model-

guided kernel execution. It semi-automatically builds the pe-
ripheral models that QEMU does not support yet by analyzing
the Linux kernel source code. The peripheral model consists of
two parts, the general model template and the specific model
parameters. The model template is manually built based on the
Linux kernel’s abstraction layers for that type of peripherals,
e.g., the interrupt subsystem, which is a one-time effort. These
abstractions help us construct state machines that can cooperate
with the Linux kernel. The state machine defines all the states
and the state transition table but leaves the transition conditions
(events) as blanks. We then extract model parameters from the
peripheral’s driver code to fill these blanks to generate transition
conditions. The parameters are automatically generated by
symbolic execution. The peripheral models then can guide the
kernel’s execution in a synthesized QEMU virtual machine.

We have developed a prototype called FirmGuide that has
two components. One is offline model generation analyzing
the Linux kernel source code to semi-automatically generate
peripheral models. The other is online kernel booting checking
the hardware dependency of the Linux kernel with its device
tree and rehosting the Linux kernel with a synthesized QEMU
virtual machine. Note that FirmGuide requires the Linux kernel
source code during the first component to generate peripheral
models, but does not need the source code in the second
component to rehost the Linux kernel inside the firmware.

Evaluation To evaluate the effectiveness of our method, we
manage to generate 9 Type-I peripheral models and 64 Type-II
peripheral models (Section VI-B) and synthesize corresponding
QEMU virtual machines for each embedded Linux kernel.
With the virtual machines, we’ve rehosted the Linux kernels in
6, 188 firmware images downloaded from the Internet [17,18].
On one hand, 5, 947 (96.11%) Linux kernels are successfully
rehosted (entering into the user space), and none of them
can be rehosted in the vanilla QEMU (Section VI-C). On
the other hand, the rehosted Linux kernels cover 26 SoCs, 2

architectures, and 22 kernel versions (Section VI-D). Note that
the rehosted Linux kernel version is not necessarily as same as
the version to generate peripheral models. This result, together
with the number of rehosted Linux kernels, demonstrated the
scalability of our system. Furthermore, we used the Linux
Testing Projects (LTP) [19] to test the functionality of the
rehosted Linux kernels, showing the feasibility to build security
applications (Section VI-E).

We further present two applications to show the usage
scenarios with the support of the synthesized QEMU virtual
machines. First, we analyzed 6 Linux kernel CVEs. With
the help of the debugging capability of QEMU, we have
successfully triggered 5 and exploited 4 of them, respectively.
This shows the usage of the synthesized QEMU virtual
machines to trigger, understand, and exploit vulnerabilities of
the rehosted Linux kernels. Second, we have ported two fuzzing
tools UnicoreFuzz [20] and TriforceAFL [21] to demonstrate
the capability of supporting other dynamic analysis tools to the
rehosted Linux kernels. The applications themselves are not
our contribution but can demonstrate the usage scenarios of
FirmGuide. Nevertheless, without the capability of FirmGuide

to rehost the embedded Linux kernels, it’s hard, if not
impossible, to apply these security applications to them.

Contributions Our main contributions are as follows.
• We summarized the problem of rehosting embedded Linux

kernels and proposed a new technique called model-guided
kernel execution to semi-automatically generate stateful
peripheral models that are not supported in QEMU.

• We implemented a prototype called FirmGuide to boost the
capability of rehosting embedded Linux kernels. Evaluated
with 6, 188 firmware, the result shows that we can success-
fully rehost more than 95% Linux kernels covering 26 SoCs,
2 architectures, and 22 versions.

• FirmGuide lays a foundation to perform the dynamic analysis
of embedded Linux kernels. We applied FirmGuide to vul-
nerability analysis and fuzzing to show the usage scenarios.
We have released the Docker image to dry run our sys-

tem [22]. To engage the community, we will release the source
code of FirmGuide [23].

II. BACKGROUND

Embedded Systems Advanced embedded systems, e.g.,
routers, are often based on the SoCs that have integrated
CPU, memory, and basic peripherals. Among those peripherals,
Interrupt Controller and Timer are two of the most important
peripherals. Peripherals use interrupts to inform the processor
of what is happening and an Interrupt Controller attached to a
processor is responsible for delivering the interrupts. After the
Interrupt Controller notifies the processor that an interrupt is
fired, the processor then retrieves the interrupt request number
(IRQn) from it and jumps to the corresponding interrupt service
routine (ISR). An embedded system usually requires two kinds
of Timers. One connected to the Interrupt Controller is used
for periodically generating interrupts for task scheduling. The
other one which never raises an interrupt is used as the source

2

1 compatible= "plxtech,nas7820";
2 cpu@0; // processor
3 memory; // memory
4 ic@47001000 { // peripheral 1
5 compatible="arm,arm11mp-gic";
6 // MMIO memory space <start, size>
7 reg = <0x47001000 0x1000>;
8 };
9 ethernet@41000000; // peripheral 2

Fig. 1: An example of the device tree of OX820 NAS7820 SoC.

void gic_mmio_read(gic, offset) {
 state_machine(gic, "read", offset); }
void gic_mmio_write(gic, offset, value) {
 state_machine(gic, "write", offset, value); }

Linux kernel

QEMU

gic_write32gic_read32

Full

Dummy void gic_mmio_read(gic, offset) {
 return get_init_value(gic, offset); }
void gic_mmio_write(gic, offset, value) {}

gic_mmio_writegic_mmio_read

Fig. 2: An example of QEMU peripheral emulation. FirmGuide
supports both fully functional and dummy peripheral models.

of time counting. The Linux kernel maintains the timeline by
periodically reading this Timer’s count register.

The device tree describes the hardware information of an
SoC. It is passed to the Linux kernel at the beginning of the
booting process. The Linux kernel then uses it to correctly
initialize peripherals. It has a property named compatible which
is the model number. For example, as shown in Figure 1, the
top-level compatible is the model number of the SoC and the
second-level is the model number of the specific peripheral
(i.e, Interrupt Controller). Besides, the device tree has a rich
description of a peripheral, including its MMIO ranges, IRQn,
input clock frequency, etc. We retrieve the description from
the device tree for further analysis.

Memory Mapped I/O Memory Mapped I/O (MMIO) is
one kind of communication method between software and
hardware. With the help of MMIO, the Linux kernel can map
physical registers of a peripheral to the physical address space.
Therefore, from the Linux kernel’s perspective, it can interact
with the peripheral (reading or writing registers) as it interacts
with the memory (reading or writing memory). The Port I/O
(PIO) is not considered in this paper due to the following
consideration: 1 our key method also works for PIO cases;
2 PIO is rarely used in our target firmware.

QEMU QEMU [24] is one of the most popular full system
emulators that consists of peripheral models. In Figure 2, the
peripheral model implements read and write callback functions
for its registers. When the embedded Linux kernel reads
from an MMIO address, the read callback function will be
invoked. The write callback function works similarly. A fully
functional peripheral model has a state machine that emulates
the peripheral’s functionality. If there is no such state machine,
we call this a dummy peripheral model. Leaving the real
functionality unimplemented, we usually need to initialize its
MMIO address space with proper initialized values.

III. PROBLEM STATEMENT AND SOLUTION

Our goal is to boost the capability of rehosting embedded
Linux kernels in QEMU. To rehost these embedded Linux
kernels, we first discussed with a well-experienced embedded
system engineer what he normally did to support a new device.
According to his experience, we were surprised to know that,
given the source code of a Linux-based firmware, extending it
to support a new IoT device (till kernel booted successfully, e.g.,
spawn a userspace shell) only requires the adaption of the driver
code of certain peripherals. This fact implies that the task for
emulating the Linux-based firmware may not be as complex
as it looks (may only require several key peripherals). To
better understand this, we systematically analyzed the booting
process of the Linux kernel and the emulation mechanism of
a peripheral inside QEMU. We summarized the identified key
challenges and observations for the rehosting as the following.

Challenges 1 A real physical embedded device usually
has multiple peripherals, and it is tedious and error-prone to
emulate them manually. The statistics of 1,639 device tree blobs
of OpenWRT firmware shows that the number of peripherals
per device ranges from 5 to 76, around 32 on average. 2 The
embedded Linux kernels share common types of peripherals
for different SoCs, e.g., Interrupt Controller or Timer, but these
peripherals follow different hardware specifications provided
by different SoC vendors, which is impractical to manually
implement all of them. 3 Every peripheral’s interfaces
(hardware registers) have diverse semantics, thus making the
construction of a peripheral model more challenging. The
diversity resides in two aspects. On one hand, through the
peripheral interfaces, the Linux kernel can retrieve the status
and control the behavior of the peripheral. The peripheral
maintains its inner states and reacts according to different
interfaces. On the other hand, a peripheral interface itself
has semantics as well. For example, an Interrupt Controller
maintains the status (masked, unmasked, etc.) of each interrupt
source inside a register. A single bit flip of this register can
lead to the change of the hardware’s inner states. Building a
successful peripheral model usually requires the understanding
of its inner states, state transitions, and hardware register
semantics.

Observations 1 Achieving our goal requires the full
functionality emulation of only a few peripherals. We
define a successful rehosting of the Linux kernel when the CPU
has entered the user mode to execute the initialization process
(run_init_process). Though a successful rehosting process
involves dozens of different peripherals (32 on average), they
can be divided into two types. Specifically, Type-I peripherals
include the ones which have complicated interactions with the
Linux kernel and need to be emulated with their full func-
tionality. This type of peripherals includes Interrupt Controller,
Timer, and UART. A popular NS16550A UART has been well
supported in QEMU and can be reused directly. However,
the rest of Type-I peripherals, i.e., Interrupt Controller and
Timer, require fully functional emulation. We define Type-II
peripherals as the ones which only require minimum emulation

3

#define X1 reg_mask
#define X2 0x1 << 3
void qemu_mmio_read(addr) {
 if (addr == INTC_REG_MASK)
 { msk_read = true; return X1; }
 if (addr == INTC_REG_STATUS)
 if (irq_3_activate)
 return X2;
}
void qemu_mmio_write(addr, value) {
 if (msk_read && \
 value == (X1 & 0xfffffff7)) {
 X1 = value;
 /* (a) r/w seq matches */
 do_transition(EVENT_IRQ_3_MASK);
}}

static void handle_irq_callback(...)
{
 u32 pending = readl(INTC_REG_STATUS);
 while(pending) {
 u32 irq = __ffs(pending);
 generic_handle_irq(irq);
 pending |= ^(1 << irq);
 }
}

static void irq_mask_callback(u32 irq)
{
 u32 mask = readl(INTC_REG_MASK);
 mask &= ~(1 << (irq & 0x1f))
 writel(mask, INTC_REG_MASK);
}

1
2
3
4
5
6

1
2
3
4
5
6
7
8
9 Linux kernel driver code QEMU peripheral code

(a)

(b) (c)

(a):

 ① L3 <MMIOR, INTC_REG_MASK, X1>
 ② L5 <MMIOW, INTC_REG_MASK, X1 &
0xfffffff7>

(b):

 ③ L3 <MMIOR, INTC_REG_STATUS, X2>

State transition on R/W Seq (d)

matches ① & ②

unmsk msk

inact

irq 3 activate & matches ③

act

①

②

③

Fig. 3: Examples for using R/W Seq to guide kernel’s execution: (a), (b) show recognition and control, respectively, (c) shows the R/W Seq
matching in the peripheral model, (d) details the state transition by R/W Seq. The MMIO operations in (a), (b) are marked in grey, macro
INTC_REG_XXX represents the MMIO register addresses, and __ffs is short for ”find first set”.

(as a dummy MMIO memory region with proper initial values.)
They only need to provide suitable values when the Linux
kernel reads specific peripheral registers (MMIO read) during
the booting process. No inner states of the peripherals need to
be emulated. Such peripherals include Network Card, Flash,
etc.

2 The Linux kernel has well-defined abstraction models
for different types of peripherals. The Linux kernel
core (upper layer) abstracts a type of peripherals as one
device with a set of common actions. Each device driver
(lower layer) has to implement these actions. For the Type-
I peripherals (Interrupt Controller and Timer), the upper
abstraction layers are the interrupt and the time subsystems,
respectively. The lower implementation layers are the low-
level device drivers of the peripherals. For instance, in the
interrupt subsystem, each Interrupt Controller is an instance of
struct irq_domain, and the common actions are callback func-
tions like irq_domain->irq_mask, irq_domain->irq_unmask,
irq_domain->irq_ack, etc. A low-level device driver provides
the functions’ implementation. In the rest of the paper, we use
critical functions to represent these callback functions.

3 Well-defined abstraction models and kernel-peripheral
interactions can be combined to describe the peripheral
interfaces. The above-mentioned kernel abstractions inspire
us to build a peripheral model in QEMU that combines kernel-
peripheral interactions to guide the kernel’s execution to a
successful rehosting (hence the name model-guided kernel
execution). Specifically, the peripheral model is a state machine
summarized from the upper layer (subsystem). It defines the
states and available state transitions. This state machine can be
manually extracted from the Linux kernel source code, which
is a one-time effort. Besides, the peripheral model needs to
recognize executed critical functions and then react accordingly.
A key intuition is that MMIO read/write sequences (R/W Seq)
from the Linux kernel to the peripherals are signatures to
represent the execution paths of a critical function. They can
be used in recognizing the paths of critical functions that the
Linux kernel has executed, and controlling the Linux kernel’s
following execution by returning specific values to the Linux
kernel in an MMIO read request. A path’s R/W Seq can be
automatically inferred via symbolic execution.

A Motivating Example Figure 3 shows an example of using
R/W Seq to guide kernel’s execution. The MMIO operation is
marked as <MMIOR/MMIOW, addr, expr>, where MMIOR/MMIOW

is read/write operation, addr is read/write address, and expr is
the value the Linux kernel reads from/writes to the peripheral
model. For simplicity, we only consider IRQn 3.

Figure 3(a) shows a simplified irq_mask callback function
to demonstrate how to recognize its execution from the
peripheral’s perspective. The Linux kernel calls it to mask a
specific interrupt source (the irq argument). Given a concrete
irq value, e.g., 3, the R/W Seq is <MMIOR, INTC_REG_MASK,

X1>, <MMIOW, INTC_REG_MASK, F(X1)>, where X1 is a sym-
bol representing the MMIO read value and F(X1) = X1 &

0xfffffff7. As shown in Figure 3(c), by matching the R/W
Seq, the peripheral recognizes that the Linux kernel is calling
irq_mask. Specifically, the peripheral can figure out the IRQn
3 by checking whether X1 (returned to the Linux kernel) and
value (written to the peripheral) satisfies the equation F(X1).
After matching the R/W Seq, the peripheral recognizes the
event the Linux kernel masks the interrupt source whose number
is 3 and shifts its state correspondingly.

Figure 3(b) is an implementation of handle_irq callback to
demonstrate how to control its execution from the peripheral’s
perspective. Once the Linux kernel receives an interrupt request
from the Interrupt Controller, it calls handle_irq to dispatch
the request of the IRQn obtained from the Interrupt Controller.
The R/W Seq is <MMIOR, INTC_REG_STATUS, X2>, where X2

stands for the MMIO read value. The peripheral can control
the execution times and the argument of generic_handle_irq

by providing a crafted X2. In Figure 3(c), after matching the
R/W Seq, the peripheral returns 0x1 << 3 and tells the Linux
kernel that the interrupt source 3 should be triggered after
reading INTC_REG_STATUS.

Lastly, as shown in Figure 3(d), we found that R/W Seq
can behave as the state transition condition in the peripheral
model by guiding the kernel’s execution towards a specific
code path. Intuitively, we can create a full state machine of
the peripheral by manually building the general peripheral
model of the states and transitions (using the Linux kernel’s
abstraction) and extracting R/W Seqs as the transition condition
(use symbolic execution to analyze the critical functions).

4

Linux	Kernel
Source	Code	

Parameters
Generation

Device	
Models

Component	1:	Offline	Model	Generation

QEMU	Virtual	
Machine	Composition

Binary
Firmware

Component	2:	Online	Kernel	Booting

FirmGuide

Model	
Template

Model	
Parameters

Template
Construction

Fig. 4: FirmGuide architecture.

Model-Guided Kernel Execution Based on the above
observations, we proposed a new method called model-guided
kernel execution to emulate the Type-I peripherals. We split the
peripheral model into two parts: the model template (periph-
eral independent part) and the model parameters (peripheral
dependent part). Specifically, for each type of peripherals,
we manually build its model template from the Linux kernel
subsystems (Section IV-A), and the model parameters are
automatically generated from the low-level driver code (Sec-
tion IV-B). Therefore, our model generation for each specific
peripheral works like a fill-in-the-blanks process. Finally, the
generated models can guide (recognize and control) the kernel’s
execution to a successful rehosting.

We have developed a prototype named FirmGuide. Figure 4
shows its architecture. It consists of two components: offline
model generation and online kernel booting. The first com-
ponent analyzes the Linux kernel source code to generate
peripheral models, while the second rehosts embedded Linux
kernels using synthesized QEMU virtual machines equipped
with the generated peripheral models. Note that, though our
system requires the Linux kernel source code in the offline
component, there is no need for source code in the online kernel
booting. Section IV and V detail these two parts respectively.

IV. OFFLINE MODEL GENERATION

In the offline model generation, we use model-guided kernel
execution to semi-automatically generate the peripheral models
for Interrupt Controllers and Timers with the Linux kernel
source code. The generated peripheral models (C code) can
be compiled with QEMU to provide the full functionality
of the peripherals. Figure 5 shows its procedure. The model
generation process has two parts: the manual model template
construction and the automatic model parameters generation.

As shown in Figure 5, the model templates are inducted from
the Linux kernel subsystems. The template for each type of
peripheral contains a state machine that communicates with the
Linux kernel subsystems via critical functions. In other words,
if the model template knows exactly which critical function the
Linux kernel has executed, it will react correctly by shifting
its inner states and taking the following actions. The model
template implements the nodes (states) and the unidirectional
edges (state transition table) of a state machine but leaves the

transition conditions as blanks (triggering of events). Note that
the model template construction is a one-time effort for each
type of peripherals.

The model parameters, generated by analyzing the low-level
driver code, are designed to describe the transition conditions.
Note that the conditions for triggering these events are the
executions of specific paths of the critical functions. For
example, in Figure 3(a), the event of masking interrupt source
irq means the calling of irq_mask_callback with argument
irq. To describe these events, we combine three methods to
extract all necessary information: Basic R/W Seq Extraction
(Section IV-B), CFSV Handling (Section IV-C), and Value’s
Semantics Inference (Section IV-D). The first one generates the
basic R/W Seq of an execution path of a critical function. The
last two complement the first method and extract additional
properties of the execution path for the cases where only using
R/W Seq is not enough.

A. Template Construction

The model template construction is to build a state machine
containing all actions of that type of peripherals. To do so,
we first studied the abstraction of the Interrupt Controller and
Timer subsystems in Linux. Specifically, there are three kinds of
events that can be triggered for a given peripheral, which are the
Linux kernel, other connected peripherals, and the peripheral
itself. For example, an Interrupt Controller has events like
masking an interrupt (from the Linux kernel), requesting for
firing an interrupt (from other peripherals), and selecting an
interrupt to fire (from itself). Based on the defined events,
we design the states and the state transition table but leave
the transition condition (triggering of the events) as blanks.
Note that only transition conditions from the Linux kernel are
handled as blanks, while others have simple conditions like
raising or lowering the interrupt signal. We manually designed
eight to nine events and four to five states for the edge- and
level-triggered Interrupt Controllers. Similarly, we have two
models for clkevt Timers with nine events and four states, and
clksrc Timers with four and two. You can find more detail
about these manually built model templates in [22].

B. Basic R/W Seq Extraction

A basic R/W Seq is a sequence of MMIO read or write
operations which used to represent a specific execution path of
the critical function. Indeed, more than half of the cases only
use the basic R/W Seq to represent the transition conditions.
We apply symbolic execution to the critical functions to find
out the MMIO operation sequences of the paths which can
represent specific functionality (e.g., mask interrupt source
whose number is 3). These operation sequences are called the
basic R/W Seq. Figure 6 shows its general workflow.

Boot Context Preparation Applying symbolic execution
directly to a critical function needs an execution context. We
create a simplified booting process to get the initial context of
the related kernel subsystems. Specifically, the booting process
is simplified from the Linux kernel start_kernel but only does
necessary initialization of kernel subsystems (i.e., only keep

5

IRQ Subsystem
TIMER Subsystem

Low-level Drivers
Device Tree Blob

Model Template

Model Parameters

<Read, 0x1234, 0x0>
<Write, 0x1238, 0x3>

…

intc_init() {
…
}
timer_init() {
…
}
…

QEMU Device

Kernel Subsystems

Device Drivers

Linux
Kernel

Basic R/W Seq Extraction
CFSV Handling

Value’s Semantics Inference

Manual Induction

Template Construction

Parameters Generation

Fig. 5: Overview of model-guided kernel execution.

Start

EXT §IV-C

Boot context
preparation

Last
context
used?

Replay
context

Last TC
profiled?

Set execution
goal

Parameter
inference

N

Y

N

Y

Profile TCTerminate

Fig. 6: General workflow of basic R/W Seq extraction. TC stands
for a transition condition. The dotted arrow marks the extension
mentioned in Section IV-C.

interrupt and time subsystem initialization code). Applying
the symbolic execution to this booting process, we may get
multiple paths that can successfully finish the whole booting
process. Each path and its memory status (initial values) is one
valid boot context because multiple hardware configurations
can correctly boot the Linux kernel in practice. The initial
values are obtained after the constraint solving. Moreover, the
context preparation also solves the problem of inferring initial
values for Type-II peripherals. Note that we introduce a new
symbol for each MMIO read operation in this and the following
symbolic execution since it is indeed a volatile operation.
Replay Context After the boot context preparation, the
symbolic execution engine (KLEE) has maintained several
booting contexts in memory. Before executing critical functions,
we additionally implement a context replay technique to
recreate these booting contexts by rerunning the boot process
with one valid boot context. As KLEE only uses one host
CPU to perform the state exploration, for each booting context,
we analyze all transition conditions independently, such that
the replay technique can also make full use of the host CPU
resources to speed up the analysis.
Obtain Transition Conditions The next step is to obtain the
transition conditions based on the model template. For instance,
the model template of Interrupt Controllers requires us to
collect the transition conditions for critical functions including
irq_mask, irq_ack, irq_unmask, etc., for each interrupt source
(we obtain the list of the interrupt sources from the device
tree). Each transition condition is noted as the pair <execution
goal, critical function>. We first prepare the list of the
pairs from the state machine and then obtain each transition
condition by symbolically executing (profiling) the critical
function with the execution goal. We use a pass of analysis to
represent the enumeration of this list.

Set Execution Goal: The execution goal is to describe the
desired path that implies the transition condition. Each critical
function may have multiple paths, and the desired path is the

1 #define MASK_ADDR 0xFFFF0014
2 void irq_mask(u32 irq) {
3 u32 mask = 0x1 << irq;
4 /* The mask_cache is a CFSV, i.e.
5 * a non-local variable and a symbolic value. */
6 *mask_cache &= ˜mask;
7 writel(*mask_cache, MASK_ADDR);
8 }

Fig. 7: A simplified CFSV example

one to finish its real functionality. For example, in Figure 3(b),
to find the execution path of the firing interrupt source whose
number is 3, the execution goal should be in the following: 1

it must call generic_handle_irq once and only once; 2 it
must call generic_handle_irq and pass 3 as the first argument;
3 it must return from the function without error.

Profile Transition Condition: The MMIO operations in the
path that satisfy the execution goal are traced as the profile.
Parameter Inference The following rules are used to infer
the basic R/W Seq from the profile. 1 For an MMIO read,
if the symbol value has constraints, we append a new node
<MMIOR, addr, value> to the basic R/W Seq list, where the
value is the concrete value provided by the constraint solver.
This node tells the peripheral model to return a value when
the Linux kernel reads from this MMIO address. 2 For an
MMIO read, if the symbol has no constraints, we append a
new node <MMIOR, addr, USE_LAST_VALUE> to the basic R/W
Seq list. This node tells the peripheral model to provide the last
value written to the same MMIO address when reading from
it. 3 For an MMIO write, we append a new node <MMIOW,

addr, match(expr)>, where the match is a function used by
the model to check whether the value written by the Linux
kernel satisfies the expr.

C. CFSV Handling

Basic R/W Seq works well in cases where there is no data
exchange between two critical functions in a pass of analysis.
From our experience, this assumption is tenable for major cases.
However, the data exchange can happen between two executions
of the critical function. Specifically, it happens through the
read and the write operations to a non-local variable in two
executions. A non-local variable for a function is the variable
whose life cycle is longer than that function, e.g., global
variables and heap variables. Figure 7 shows an example. The
mask_cache in line 6 is a heap variable. It records the current
mask status of all interrupt sources. It is updated whenever
the Linux kernel invokes the irq_mask or irq_unmask and is
also used in line 7. This leads to a problem that the profiled
expr in line 7 cannot match the real scenario because the value

6

Algorithm 1: CFSV Detection
input : ctxt, symbolic execution context
output :CFSV s, recognized CFSV set

1 init empty set CFSV s, nonlocal rw;
2 do
3 state merge begin();
4 label known CFSV s in ctxt;
5 records ←− do a pass of analysis using ctxt;
6 nonlocal rw ←− extract memory r/w info from records;
7 state merge end();
8 update CFSV s based on merged nonlocal rw;
9 while CFSV s has increased;

written in line 7 can be changed. Therefore, the mismatch will
happen, and the peripheral model cannot work properly.

CFSV Definition We first introduce a concept called Cross
Function Symbolic Variable (CFSV). CFSV is a non-local
variable that is both read and written after a pass of analysis.
Since the value of a CFSV can be updated in one function and
be used in another function, its value depends on the execution
amount and execution order of these critical functions. If a
critical function is CFSV-free, the basic R/W Seq is enough to
describe the transition condition. Conversely, if not CFSV-free
(read or write CFSV), we need to record CFSV read/write
operation, extend the basic R/W Seq by adding the CFSV
information, then emulate the CFSV in the peripheral model.

CFSV Detection Algorithm 1 depicts an algorithm that
finds the CFSVs incrementally. There are several assumptions
to guarantee that the algorithm can finally converge: 1 no
new allocated memory among all critical functions; 2 no
symbolic pointers; 3 the critical function is at a reasonable
size so that the symbolic execution can finish its exploration.
These assumptions ensure the amount of the CFSVs is finite and
fixed. Therefore the CFSV s in Algorithm 1 is a monotonically
increasing set with an upper bound. Consequently, the algorithm
can reach a fixed point at last.

Note that line 3 and line 7 use a technique in KLEE called
state merging [25]. We adjust it to support additional merges
of CFSV related information. Merging state helps us aggregate
the CFSV read/write operations in a pass of analysis while
keeping the number of contexts unchanged. Line 4 labels known
CFSV s in the context and all known CFSV s are regarded
as fake MMIO registers, i.e., every read of CFSV introduces a
new symbol. The reason is that CFSV can be changed during
the execution. Thus we symbolize it as any possible value (an
over-approximation) to maximize the path exploration. In line
6, we collect all non-local variables’ read/write information in
each state and then merge the information. After that, we use
the information to update the CFSV s. The CFSV detection
is added at the dotted arrow in Figure 6.

To handle the CFSV, we emulate its data propagation in our
model. Similar to the CFSV detection, we treat the CFSV as
a fake MMIO register in the pass of analysis. The introduced
symbols are marked with CFSV labels in the profile. Then we
record its data propagation in parameter inference by extending
basic R/W Seq with two new types of nodes called <CFSVR,

addr, val> and <CFSVW, addr, expr>. Finally, we allocate

global variables and emulate the data propagation of CFSV
along with the basic R/W Seq in the peripheral model.

D. MMIO Value’s Semantics Inference

The above two methods solve the problems of describing
a path of critical function. However, to emulate a Timer,
the model needs to understand the semantics of the MMIO
register’s value for correct reaction to some critical functions.
One case is that our Timer model needs to understand when
the Linux kernel wants to fire the next Timer interrupt. Firstly,
the Linux kernel determines a value in cycle_t (a tick for the
Timer device, the smallest unit). Then it aligns the unit with
the specific Timer device. The formula of the unit conversion
can be collected during the symbolic execution.

However, from the emulated Timer’s perspective, understand-
ing the time period represented by the Linux kernel written
value requires us to convert back the value’s unit to the common
one (cycle_t). That means we need to perform the reverse
operation for the formula. Mostly, the conversion formula is
as simple as y = k ∗ x where k is a constant, and x, y are the
time periods represented in two units. We can directly detect
these cases and handle them in a lightweight way (hardcode
their inverse functions). If we meet a complicated conversion
formula, we need a constraint solver in the peripheral models.
To the best of our knowledge, we did not meet a complicated
formula in real-world cases.

We again extend our basic R/W Seq by adding unit
conversion information. This extension helps our emulation to
provide accurate time emulation for Timer peripherals.

E. Implementation Detail

In the offline model generation, the model template has
2, 812 lines of C code (1, 712 for the Interrupt Controller,
1, 100 for Timer). The parameter generation part is based on
KLEE, including 4, 869 lines of C code for static analysis,
1, 902 lines of C++ code for patching KLEE, and 1, 110 lines
of Python code for gluing.
Preprocessing of Source Code FirmGuide leverages LLVM
and KLEE [26] to perform static analysis on the Linux kernel
source code. We preprocess the code for three reasons. 1 We
replace the inline assembly with the equivalent C functions
because LLVM cannot analyze assembly code. 2 We simplify
some libraries’ functions and change static variables to be
visible to other modules to make the analysis easier. Note that
this is a one-time effort since we only change common header
files 3 Moreover, these changes, targeting small functions
and limited variables, do not affect the static analysis results
since we do not change the code semantics.
Analysis Based on Symbolic Execution Our symbolic
analysis is developed upon KLEE. The input is the target
Linux kernel source code as well as its device tree. The
outputs are generated model parameters. These parameters
will be rendered into the model template to generate peripheral
models that can be directly compiled with QEMU. In detail,
we compile the target Linux kernel source code as a linked
LLVM IR file and run the symbolic execution on the IR

7

TABLE I: Overview of representative OpenWrt subtargets.

subtarget Source Code Firmware
Rev. of

OpenWrt
Ver. of

LinuxKern
Archi-
tecture

of
Firmware

of
SoCs

of
Vendors

ramips/rt305x 15.05 3.18.20 mipseb 5249 4 55
ath79/generic 19.07.1 4.14.167 mipsel 613 15 24

kirkwood/generic 15.05 3.18.20 armel 482 3 6
bcm53xx/generic 15.05 3.18.20 armel 388 3 1

oxnas/generic 15.05 3.18.20 armel 176 1 4
summary ×2 ×2 ×3 6, 908 26 90

file. The following strategies are applied. 1 Control the
symbolic execution’s flow by feeding the bogus entry point
of the linked IR. We add our main function to the LLVM
IR file and therefore the symbolic execution will start there.
Inside the main function, firstly the simplified kernel booting
process (e.g., time_init, init_IRQ) will be executed to get the
booting context, then the analysis code is launched to generate
the template parameters (Figure 6). 2 Hook an entire library
of the Linux kernel by linking our customized implementation
rather than the original code. Our customized libraries cover
the Linux kernel’s interrupt subsystem, time subsystem, device
tree libraries, memory management, and stdlib facilities. This
simplifies the symbolic execution and avoids the possible path
exploration. 3 Add auxiliary features facilitating the analysis
mainly by extending the KLEE’s SpecialFunctionHandler

interface.

V. ONLINE KERNEL BOOTING

The online kernel booting component is implemented with
several existing tools. Given a firmware image, we first retrieve
the Linux kernel and the device tree from the image using
Binwalk. We then extract the peripheral list from the device
tree. For each peripheral in the list, we use its compatible

property in the device tree entry to match the generated
peripheral models in offline model generation. This is feasible
because we organize the generated peripheral models by the
same compatible property. The peripheral models (C code)
will be compiled together with the QEMU. To add a new
virtual machine in QEMU, we need to write a machine file in
C language that initializes all peripherals. We automatically
generate a generic machine file and finally use the generated
QEMU virtual machine to rehost the Linux kernel along with a
prepared ram file system (ramfs) that is generated by Buildroot.
This component is written in Python with 5, 519 lines of code.

VI. EVALUATION

A. Experiment Setup

To evaluate the effectiveness of our system, we conduct
experiments using firmware images downloaded from OpenWrt
covering multiple SoCs. The source code for a family of SoCs
is organized in a subtarget. We select the top five subtargets
covering 26 SoCs and 90 vendors following three criteria:
they support device tree; they cover different architectures
and endianness; they are popular due to a number of released
firmware images [17,18]. Table I shows the details of our
dataset. The number of ramips/rt305x firmware images is
larger than others because OpenWrt has more firmware images

released for ramips/rt305x. Note that we conduct experiments
on OpenWrt because this dataset has covered diverse SoCs,
vendors, architectures and kernel versions, making the dataset
representative.

We conducted all experiments on a server with two Intel
Xeon Silver 4114 processors, 128GB RAM, Ubuntu 16.04.6
LTS system. We have released the Docker image of the
generated QEMU virtual machines and part of the firmware
images used in our evaluation [22].

B. Offline Model Generation

Model Parameters Generation As shown in Table II,
FirmGuide generates model parameters for 9 Type-I peripherals.
Note that we do not generate parameters for Timers (marked as
not necessary) in two MIPS subtargets. Because the QEMU
MIPS processors have implemented these timers. Specifically,
the 4th column shows the number of paths that the symbolic
execution engine explores during the model generation. The
5th column shows the final solutions our system finds for a
successful rehosting. The longest time to find the first solution
is still within one hour showing that our approach is faster than
developing the peripheral models manually. The 6th column
details the time to get the first solution and all solutions. The
7th column gives the existence of CFSV. The 8th column
presents the unit conversion formula used in the Timer for that
subtarget. The x represents a time interval that aligns with the
specific Timer’s unit, y is the value in terms of cycle_t. We
use x1, x2 to represent two registers that the peripheral uses
to present the time. The last column lists the lines of the code
for the generated peripheral models.
Type-II Peripheral For Type-II peripherals, we automati-
cally generate their peripheral models without state machines
but with the proper initial values of their hardware registers.
The values are calculated in the boot context preparation (Sec-
tion IV-B). Table III shows the number of Type-II peripherals
emulated and of those having non-zero initial values. In total,
10 Type-II peripherals out of 64 have non-zero initial values.

C. Online Kernel Booting

Besides offline model generation, we conduct experiments to
rehost a number of firmware images. The results show that our
generated QEMU machines can successfully rehost more than
95% of the Linux kernels. During the evaluation, we check
whether the Linux kernel image has switched to user mode by
parsing the CPU register file traces provided by QEMU debug
option -d cpu. We also check whether the ramfs has spawned
a shell by detecting the booting messages, i.e., Welcome to

Buildroot. The overall result is shown in Table IV. In total,
for 6, 908 firmware images, 6, 192 of them are successfully
unpacked. We retrieved 6, 188 Linux kernels. Among them,
5, 947 (96.11%) enter the user space, and 5, 469 (88.38%)
successfully spawn shells. We manually analyzed the reasons
for the failed cases.
Triggering of a Double-free Bug= Some Linux kernels in
kirkwood/generic suffer from a double-free bug in the function
orion_nand_probe [27], where clk_put will be called twice

8

TABLE II: Results of offline machine model generation.

Subtarget Interrupt Controller Timer # of
Paths

of
Solutions

First/All
Solution (s)

Exists
CFSV (y/n)

Timer
Semantics LoC

ramips/rt305x ralink-rt2880-intc not necessary 262 4 1/2 n - 3,366
ath79/generic qca,ar7240-intc not necessary 110,083 1,134 5/943 n - 4,138

kirkwood/generic marvell,orion-intc
marvell,orion-bridge-intc marvell,orion-timer 132 2 2/3 y y =∼ x 4,790

bcm53xx/generic arm,cortex-a9-gic arm,cortex-a9-global-timer
arm,cortex-a9-twd-timer 150,336 2,592 2,027/24,070 y y =

x1 << 32 + x2
3,537

oxnas/generic arm,arm11mp-gic arm,arm11mp-twd-timer
plxtech,nas782x-rps-timer 52,332 1,246 914/16,184 y y = x 3,366

TABLE III: The fraction of Type-II peripherals with non-zero initial
values of all Type-II peripherals emulated in each subtarget.

Subtarget ramips/
rt305x

ath79/
generic

kirkwood/
generic

bcm53xx/
generic

oxnas/
generic

count 1/10 2/15 3/26 2/4 2/9

if the Flash device does not exist. This bug exists in the Linux
kernel before 4.9. Interestingly, this bug will not be triggered on
a physical router device, since it usually uses the Flash device
as the external storage. However, it is triggered in FirmGuide

since we only have a dummy Flash device in the emulator.
Unsupport of the Root FilesystemF Some Linux kernels
in oxnas/generic do not support the ramfs that is supported by
the Linux kernel by default. We suspect that the support of
this file system is removed to reduce the image size.

D. Firmware Diversity

We further study the scalability of FirmGuide by exploring
the diversity of the rehosted Linux kernels. Figure 8 shows
that FirmGuide can rehost diverse embedded Linux kernels.
Architecture FirmGuide supports Linux kernel images in
ARM32 with little-endian, MIPS32 with both big- and little-
endian (Figure 8a). Our system is architecture-independent.
Kernel Version FirmGuide can rehost 4 major and 22
distinct minor versions of embedded Linux kernels, no matter
when they were released, showing that the generated model is
not binding to the particular kernel version (Figure 8b).
Firmware Format We extended Binwalk to support seven
firmware formats listed in Figure 8c. Among them, the legacy
uImage is the most popular firmware format.
Firmware Size The size of supported firmware varies from
3 MB to 16 MB and the average is about 3.6MB (Figure 8d).
SoC and Vendor As shown in Table IV, FirmGuide has
supported 26 SoCs. In Figure 8e, we list the number of firmware
images for the top ten vendors.

E. Functionality

We conducted two experiments to demonstrate the function-
ality of the firmware booted by FirmGuide. First, we use the
syscall testings of LTP (Linux Testing Project) to these booted
firmware images. LTP contains testings of file systems, IO,
memory management, scheduler, etc. In total, for all 1, 259
system call tests, 1, 049 of them have been passed, 164 of
them were skipped since these tested system calls have not
been introduced at the kernel version of these booted firmware
images, and 46 of the tests failed. We analyzed the failed tests
and summarized the failure reason (Table VI). Most failures
are caused by the dummy network devices or non-implemented

TABLE IV: Results of online kernel booting. Unpack: Number of
unpacked firmware images. Kernel: Number of the Linux kernels
detected. User Space: Number of the Linux kernels entering into user
space. Shell: Number of the Linux kernels spawning shells.

SoC Unpack Kernel Booting Validation

User Space Shell

Ralink RT3050 1164 1164 1144 (98.28%) 1052 (90.38%)
Ralink RT3052 1815 1815 1815 (100.00%) 1661 (91.52%)
Ralink RT3352 173 173 173 (100.00%) 157 (90.75%)
Ralink RT5350 1632 1632 1611 (98.71%) 1475 (90.38%)

subtarget: ramips/rt305x 4784 4784 4743 (99.14%) 4345 (90.82%)

Atheros AR7161 36 36 20 (55.56%) 20 (55.56%)
Atheros AR7241 20 20 12 (60.00%) 12 (60.00%)
Atheros AR7242 24 24 24 (100.00%) 24 (100.00%)
Atheros AR9330 4 4 4 (100.00%) 4 (100.00%)
Atheros AR9331 24 24 12 (50.00%) 12 (50.00%)
Atheros AR9341 10 10 4 (40.00%) 4 (40.00%)
Atheros AR9342 24 24 24 100.00%) 24 (100.00%)
Atheros AR9344 70 70 64 (91.43%) 64 (91.43%)

Qualcomm Atheros QCA9531 22 22 16 (72.73%) 16 (72.73%)
Qualcomm Atheros QCA9533 41 41 14 (34.15%) 14 (34.15%)
Qualcomm Atheros QCA9557 64 64 64 (100.00%) 64 (100.00%)
Qualcomm Atheros QCA9558 54 54 50 (92.59%) 50 (92.59%)
Qualcomm Atheros QCA9560 16 16 16 (100.00%) 16 (100.00%)
Qualcomm Atheros QCA9561 18 18 14 (77.78%) 14 (77.78%)
Qualcomm Atheros QCA9563 114 114 106 (92.98%) 106 (92.98%)

subtarget: ath79/generic 541 541 444 (82.07%) 444 (82.07%)

Broadcom BCM4708A0 241 241 241 (100.00%) 241 (100.00%)
Broadcom BCM4709A0 128 128 128 (100.00%) 128 (100.00%)
Broadcom BCM47189 19 19 19 (100.00%) 19 (100.00%)

subtarget: bcm53xx/generic 388 388 388 (100%) 388 (100%)

Marvell 88F6192 20 20 20 (100.00%) 20 (100.00%)
Marvell 88F6281 208 204 204 (100.00%) 144 (70.59%)
Marvell 88F6282 102 102 100 (98.04%) 80 (78.43%)

subtarget: kirkwood/generic 330 326 324 (99.39%) 244 (74.85%) =

PLX NAS7820 149 149 48 (32.21%) 48 (32.21%)

subtarget: oxnas/generic 149 149 48 (32.21%) 48 (32.21%) F

Overall 6,192 6,188 5947 (96.11%) 5469 (88.38%)

TABLE V: Results of system call tests.

Models Pass Skipped Failed Total
Fully generated 1049 164 46 1259
Ground Truth 1049 164 46 1259

system calls (the Linux kernel contained in that firmware does
not support that syscall).

Second, we compared the functionality of the peripherals
generated by FirmGuide with the manually written peripherals.
plxtech,nas7820 device is used for the comparison. To manually
write the emulation code of peripherals, we first learn the
driver source code of the Type-I peripherals, then write the
QEMU emulation based on human understanding. It costs
around 1 week/person to write the emulation code of the Type-
I peripherals for plextec,nas7820 device (assuming has already
learned the driver development background, and the cost time

9

(a) Architecture (b) Kernel Version (c) Firmware Format (d) Firmware Size (e) Top-10 Vendors

Fig. 8: We can rehost Linux kernels in different architectures, Linux kernel versions, firmware formats, firmware sizes (MB), and firmware
vendors. In Figure 8b, 4.14.x has 8 sub-versions, 4.4.x has 11 and 3.18.x has 2 sub-versions; there are 22 distinct versions in total.

TABLE VI: Reasons of failed system call tests.

Reason Count
Bugs or vulnerabilities of the Linux kernel are not patched 6

Network device is not available 14
Some syscalls are not implemented 20

Other 6
Total 46

TABLE VII: Results of testing 6 CVEs for the rehosted kernel. 3
indicates a successful trigger and = indicates a successful exploit,
while 7 indicates a failure. The other three symbols (� ♦ M) represent
different versions of the Linux kernel on which we triggered or
exploited the vulnerabilities (� 3.10.49, ♦ 3.18.20, M 4.4.42).

CVE ID CVE Type Status Version

CVE-2016-5195 Race Condition 7 N/A
CVE-2016-8655 Race Condition 3 = �
CVE-2016-9793 Integer Overflow 3 � ♦
CVE-2017-7038 Integer Overflow 3 = ♦

CVE-2017-1000112 Buffer Overflow 3 = M
CVE-2018-5333 NULL Pointer Dereference 3 = � ♦

includes both the code development and debugging). Table V
shows the results where Ground Truth represents the manually
written emulation code. The results show that the generated
board has identical functionality as the manually written one.

VII. APPLICATIONS

We applied two security applications on FirmGuide to
demonstrate its usage scenarios. Note that these applications are
demonstrative and not our main contribution. Other tools [28–
31] that build upon QEMU, e.g., S2E [32], can also be applied.

Linux Kernel Vulnerability Analysis We first collected
6 Linux kernel vulnerabilities (shown in Table VII) and
then analyzed them on several Linux kernels targeting a
plxtech,nas7820 device with the OX820 NAS7820 SoC (ARM).
We then used FirmGuide to rehost the embedded Linux kernels.
Next, with the debugging capability of QEMU, we managed to
trigger 5 of them, develop 4 Linux kernel exploits, and show
the reasons for failed cases.

Vulnerability Triggering After inspecting this new execu-
tion environment with the debugging capabilities of QEMU,
5 vulnerabilities have been successfully triggered, laying a
foundation for further exploitation. The reason that CVE-2016-
5195 (a.k.a DirtyCow) cannot be triggered is the limitation
of the target firmware itself. The Linux kernels inside these
firmware images do not support madvise system call which is
necessary to trigger the race condition.

Vulnerability Understanding and Exploiting For the
rehosted vulnerable Linux kernels, we use the debugging
capabilities of QEMU to understand the vulnerabilities, search
the exploitable function pointers and successfully develop
4 exploits. For example, CVE-2017-1000112 [33], a buffer
overflow vulnerability, is triggered when the packet processing
routine switches from the UFO (UDP Fragment Offload) path
to the non-UFO one. To exploit it, the skb prev → len and the
offset of the hi-jacked pointer have to be carefully calculated.
We used the QEMU remote GDB to find an appropriate
overflow size. The detailed process of the exploit and the
usage of the GDB are shown in [22].

Fuzzing We also ported two fuzzing tools, TriforceAFL [21]
and UnicoreFuzz [20] to demonstrate the usage scenario of
FirmGuide. Due to the page limitation, the detailed running
status of these fuzzing tools is shown in [22]. Note that
FirmGuide doesn’t focus on any specific fuzzing technique
but provides the infrastructure of dynamic analysis platforms
towards embedded Linux kernels.

VIII. DISCUSSION

Threats to Validity The threats to validity comes from
three aspects. 1 In our method, the model templates should
be manually built by human experts. This manual process
possibly can be the bottleneck if the state machines of some
complex Type-II peripherals are too complex. 2 To migrate
the method to the same or other peripherals in the same or
other OSes, our method requires a peripheral interface at a
suitable layer in the target OS. The layer is suitable when it
is a common interface and its functions have clear semantics
of the peripheral; otherwise, the R/W Seq cannot effectively
guide (recognize and control) the kernel’s execution. 3 We
use symbolic execution to find usable booting context and
R/W Seq. If the critical function is complex, the parameter
generation process may fail due to the path explosion. However,
from our experience in supporting Linux, path explosion is
not a fundamental threat as the critical function tends to be
simple. Besides, our context replay in Section IV can make
the generation process running in parallel (KLEE itself doesn’t
support running in parallel). Furthermore, we don’t need to find
all solutions for a given source code as finding one satisfying
path for the boot process and one R/W Seq for each state
transition condition is enough.

10

Full Emulation of Type-II Peripherals Full emulation of
Type-II peripherals can enable more interesting functionalities
of the rehosted Linux kernel like the network facility and make
the rehosted Linux kernel complete (pass all syscall tests in LTP
in evaluation). Since dummy Type-II peripherals do not affect
the successful rehosting of the Linux kernel, full emulation of
them is out of the current work’s scope. However, the lack of
Type-II peripherals limits the ability for conducting dynamic
analysis on the code that relies on the functionality of these
peripherals, e.g., fuzzing on these drivers. Therefore, we leave
the support of Type-II peripherals as future work. From our
perspective, fully emulating more Type-II peripherals requires
more engineering efforts and perhaps the current emulation
methods should be adjusted or further improved according to
the target peripheral’s specification. Note that using dummy
Type-II peripherals doesn’t mean their drivers in the rehosted
Linux kernel cannot be dynamically analyzed. Specifically, the
hardware-independent code in these drivers can still be analyzed
as long as their driver is successfully initialized (as shown in
Ex-vivo [34]). Using the shell provided by FirmGuide, these
parts of code can be directly tested through their user-space
interfaces, e.g, related ioctl system calls.

IX. RELATED WORK

Firmware Rehosting Firmware rehosting is to dynamically
run the firmware on a virtual execution environment. One
type of firmware re-hosting focuses on transferring code
execution between the virtual execution engine like QEMU
and the physical device. In this way, Avatar [16], Prospect [35],
Surrogates [36], and Kammerstetter et al. [37] boosted the
capability of the dynamic analysis of embedded system
firmware. These systems are precise but suffer from hardware
availability and debug interface availability.

The other approaches aim at full system emulation. For
bare-metal devices, Gustafson et al. [38] managed to replace
real devices by modeling the code execution between QEMU
and the physical hardware traced by Avatar. Later, P2IM [13]
collected the instruction trace and then instantiated predefined
models. HALucinator [14] identified HAL APIs in firmware
and replaced them without hardware emulation. P2IM and
HALucinator successfully performed dynamic analysis on the
firmware of bare-mental systems without physical devices. Our
work instead focuses on the Linux kernel.

For Linux-based devices, Firmadyne [5] provides a utility
to dynamically analyze the user-space programs. Other similar
systems [11,12,39,40] also focus on user-space programs.
FirmGuide is different from them because we can rehost and
analyze the original Linux kernels inside the firmware, while
others cannot. LuaQEMU [41] manipulated the code execution
by a Lua script [41], while FirmGuide would not change
it. Partemu [42] extends QEMU to support the analysis of
TrustZone OSes rather than the Linux kernel. Simics [43]
is a full-system clock-accurate simulator that is popular in
hardware/software co-design. Theoretically, FirmGuide can
be used to further facilitate Simics by semi-automatically

generating the device emulation code using Simics’s own device
modeling language.

Firmware Analysis Researchers propose several static anal-
ysis tools to disclose vulnerabilities in the firmware [4,44–
48]. Meanwhile, dynamic firmware analysis systems are also
developed [12–14,39]. FirmGuide enables the dynamic analysis
of the Linux kernel on embedded systems, which can be
leveraged to develop dynamic security analysis frameworks.

Application with QEMU Besides firmware rehosting and
analysis, QEMU is also applied in other scenarios, e.g., malware
detection [28–31] and forensics [49–51]. However, previous
QEMU-based applications mainly target desktop or Android.
FirmGuide aims to support embedded Linux kernels, which
enriches the security applications in this area.

X. CONCLUSION

In this paper, we proposed a new technique called model-
guided kernel execution to rehost Linux kernels of embedded
firmware. It leverages kernel’s abstraction for peripherals and
kernel-peripheral interactions to semi-automatically generate
stateful peripheral models. Then the generated model can be
used to synthesize QEMU virtual machines to rehost embedded
Linux kernels. We have implemented a prototype system
called FirmGuide. It generates 9 peripheral models with full
functionality and 64 with minimum functionality covering 26
SoCs. Our evaluation with 6, 188 firmware images downloaded
from the Internet shows that it can successfully rehost more than
95% Linux kernels covering 2 architectures and 22 versions.
Two security applications have been applied on the rehosted
kernels to demonstrate FirmGuide can build the foundation of
dynamic analysis tools for embedded Linux kernels.

ACKNOWLEDGMENT

The authors would like to thank the anonymous reviewers for
their insightful comments that helped improve the presentation
of this paper. Special thanks go to Mathias Payer, Zhi Wang for
their constructive suggestions and comments. This work was
partially supported by the National Natural Science Foundation
of China (Grant No.61872438), the Fundamental Research
Funds for the Central Universities (Zhejiang University NGICS
Platform, K20200019), Leading Innovative and Entrepreneur
Team Introduction Program of Zhejiang (No. 2018R01005),
HK RGC Project (No. PolyU 152239/18E), the National
Research Foundation, Singapore under its the AI Singapore
Programme (AISG2-RP-2020-019), the National Research
Foundation through its National Satellite of Excellence in
Trustworthy Software Systems (NSOE-TSS) project under
the National Cybersecurity R&D (NCR) Grant award no.
NRF2018NCR-NSOE003-0001. Any opinions, findings, and
conclusions expressed in this paper are of the authors and do
not necessarily reflect the views of funding agencies.

REFERENCES

[1] M. Michael, “Attack landscape h1 2019: Iot, smb traffic abound,”
2019, https://blog.f-secure.com/attack-landscape-h1-2019-iot-smb-traffic-
abound/.

11

[2] J. Sattler, “Attack landscape h2 2019: An unprecedented year for cyber
attacks,” 2020, https://blog.f-secure.com/attack-landscape-h2-2019-an-
unprecedented-year-cyber-attacks/.

[3] Eclypsium, “Assessing enterprise firmware security risk in 2020,”
2020, https://eclypsium.com/2020/01/20/assessing-enterprise-firmware-
security-risk/.

[4] A. Costin, J. Zaddach, A. Francillon, and D. Balzarotti, “A large-scale
analysis of the security of embedded firmwares,” in Proceedings of the
23rd USENIX Security Symposium (USENIX Security), 2014, pp. 95–110.

[5] D. D. Chen, M. Woo, D. Brumley, and M. Egele, “Towards automated
dynamic analysis for linux-based embedded firmware,” in 23rd Annual
Network and Distributed System Security Symposium (NDSS), vol. 16,
2016, pp. 1–16.

[6] “Vulnerability statistics of linux kernel,”
https://www.cvedetails.com/product/47/Linux-Linux-Kernel.html.

[7] Z. Zhang, H. Zhang, Z. Qian, and B. Lau, “An investigation of the
android kernel patch ecosystem,” in Proceedings of the 30th USENIX
Security Symposium (USENIX Security), 2021.

[8] Z. Jiang, Y. Zhang, J. Xu, Q. Wen, Z. W. Wang, X. Zhaneg, X. Xiang,
M. Yang, and Z. Yang, “Pdiff: Semantic-based patch presence testing
for downstream kernels,” in Proceedings of the 2020 ACM SIGSAC
Conference on Computer and Communications Security (CCS), 2020, pp.
1149–1163.

[9] J. Lawall, D. Palinski, L. Gnirke, and G. Muller, “Fast and precise retrieval
of forward and back porting information for linux device drivers,” in
2017 USENIX Annual Technical Conference (USENIX ATC), 2017, pp.
15–26.

[10] S. M. S. Talebi, H. Tavakoli, H. Zhang, Z. Zhang, A. A. Sani, and
Z. Qian, “Charm: Facilitating dynamic analysis of device drivers of
mobile systems,” in Proceedings of the 27th USENIX Security Symposium
(USENIX Security), 2018, pp. 291–307.

[11] A. Costin, A. Zarras, and A. Francillon, “Automated dynamic firmware
analysis at scale: a case study on embedded web interfaces,” in
Proceedings of the 11th ACM on Asia Conference on Computer and
Communications Security (AsiaCCS), 2016, pp. 437–448.

[12] Y. Zheng, A. Davanian, H. Yin, C. Song, H. Zhu, and L. Sun, “Firmafl:
high-throughput greybox fuzzing of iot firmware via augmented process
emulation,” in Proceedings of the 28th USENIX Security Symposium
(USENIX Security), 2019, pp. 1099–1114.

[13] B. Feng, A. Mera, and L. Lu, “P2im: Scalable and hardware-independent
firmware testing via automatic peripheral interface modeling,” Proceed-
ings of the 29th USENIX Security Symposium (USENIX Security), 2019.

[14] A. A. Clements, E. Gustafson, T. Scharnowski, P. Grosen, D. Fritz,
C. Kruegel, G. Vigna, S. Bagchi, and M. Payer, “Halucinator: Firmware
re-hosting through abstraction layer emulation,” in Proceedings of the
29th USENIX Security Symposium (USENIX Security), 2020.

[15] W. L. Li, L. Guan, J. Lin, J. Shi, and F. Li, “From library portability to
para-rehosting: Natively executing microcontroller software on commod-
ity hardware,” in 28th Annual Network and Distributed System Security
Symposium (NDSS), 2021.

[16] J. Zaddach, L. Bruno, A. Francillon, and D. Balzarotti, “Avatar: A
framework to support dynamic security analysis of embedded systems’
firmwares,” in 21st Annual Network and Distributed System Security
Symposium (NDSS), 2014.

[17] OpenWrt, “Openwrt downloads,” 2020, https://downloads.openwrt.org/.
[18] ——, “Openwrt archive,” 2020, https://archive.openwrt.org/.
[19] “Testing linux, one syscall at a time.” https://linux-test-project.github.io/.
[20] D. Maier, B. Radtke, and B. Harren, “Unicorefuzz: On the viability of

emulation for kernelspace fuzzing,” in Proceedings of the 9th USENIX
Workshop on Offensive Technologies (WOOT), 2019.

[21] J. Hertz and T. Newsham, “Afl/qemu fuzzing with full-system emulation.”
2016, https://github.com/nccgroup/TriforceAFL.

[22] Q. Liu and C. Zhang, “cyruscyliu/firmguide-demo: Demo of firmguide
for ase2021.” 2021, https://github.com/cyruscyliu/firmguide-demo.

[23] ——, “cyruscyliu/firmguide: Source code of firmguide.” 2021,
https://github.com/cyruscyliu/firmguide.

[24] F. Bellard, “Qemu, a fast and portable dynamic translator,” in 2005
USENIX Annual Technical Conference (USENIX ATC), 2005, p. 46.

[25] V. Kuznetsov, J. Kinder, S. Bucur, and G. Candea, “Efficient state merging
in symbolic execution,” in Proceedings of the 33rd ACM SIGPLAN
Conference on Programming Language Design and Implementation,
2012, p. 193–204.

[26] C. Cadar, D. Dunbar, D. R. Engler et al., “Klee: Unassisted and automatic
generation of high-coverage tests for complex systems programs,” in

Proceedings of the 8th USENIX conference on Operating Systems Design
and Implementation (OSDI), 2008, pp. 209–224.

[27] G. Kroah-Hartman, “mtd: nand: orion: fix clk
handling,” 2017, https://www.mail-archive.com/linux-
kernel@vger.kernel.org/msg1403695.html.

[28] H. Yin, D. Song, M. Egele, C. Kruegel, and E. Kirda, “Panorama:
capturing system-wide information flow for malware detection and
analysis,” in Proceedings of the 2007 ACM Conference on Computer
and Communications Security (CCS), 2007, pp. 116–127.

[29] L. K. Yan and H. Yin, “Droidscope: Seamlessly reconstructing the os
and dalvik semantic views for dynamic android malware analysis,” in
Proceedings of the 21th USENIX Security Symposium (USENIX Security),
2012, pp. 569–584.

[30] M. Egele, C. Kruegel, E. Kirda, H. Yin, and D. Song, “Dynamic spyware
analysis,” in 2007 USENIX Annual Technical Conference (USENIX ATC),
2007, pp. 233–246.

[31] U. Bayer, P. M. Comparetti, C. Hlauschek, C. Kruegel, and E. Kirda,
“Scalable, behavior-based malware clustering,” in Proceedings of the
Network and Distributed System Security Symposium (NDSS), vol. 9,
2009, pp. 8–11.

[32] V. Chipounov, V. Kuznetsov, and G. Candea, “S2E: A platform for
in-vivo multi-path analysis of software systems,” in Proceedings of the
16th International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), 2011, pp. 265–278.
[Online]. Available: https://doi.org/10.1145/1950365.1950396

[33] A. Konovalov, “Cve-2017-1000112: Exploitable memory
corruption due to ufo to non-ufo path switching,” 2017,
https://www.openwall.com/lists/oss-security/2017/08/13/1.

[34] I. Pustogarov, Q. Wu, and D. Lie, “Ex-vivo dynamic analysis framework
for android device drivers,” in Proceedings of the IEEE Symposium on
Security & Privacy (S&P), 2020, pp. 1088–1105.

[35] M. Kammerstetter, C. Platzer, and W. Kastner, “Prospect: peripheral
proxying supported embedded code testing,” in Proceedings of the 9th
ACM Symposium on Information, Computer and Communications Security
(AsiaCCS), 2014, pp. 329–340.

[36] K. Koscher, T. Kohno, and D. Molnar, “Surrogates: Enabling near-real-
time dynamic analyses of embedded systems,” in Proceedings of the 9th
USENIX Workshop on Offensive Technologies (WOOT), 2015.

[37] M. Kammerstetter, D. Burian, and W. Kastner, “Embedded security testing
with peripheral device caching and runtime program state approximation,”
in 10th International Conference on Emerging Security Information,
Systems and Technologies (SECUWARE), 2016.

[38] E. Gustafson, M. Muench, C. Spensky, N. Redini, A. Machiry, Y. Fratan-
tonio, D. Balzarotti, A. Francillon, Y. R. Choe, C. Kruegel, and G. Vigna,
“Toward the analysis of embedded firmware through automated re-hosting,”
in Proceedings of the 22nd International Symposium on Research in
Attacks, Intrusions and Defenses (RAID), 2019, pp. 135–150.

[39] P. Srivastava, H. Peng, J. Li, H. Okhravi, H. Shrobe, and M. Payer,
“Firmfuzz: Automated iot firmware introspection and analysis,” in
Proceedings of the 2nd International ACM Workshop on Security and
Privacy for the Internet-of-Things (IoT S&P), 2019, p. 15–21.

[40] therealsaumil, “Arm-x firmware emulation framework,” 2019,
https://github.com/therealsaumil/armx.

[41] R. Nico, “Emulation and exploration of bcm wifi frame parsing using
luaqemu,” 2017, https://comsecuris.com/blog/posts/luaqemu bcm wifi/.

[42] L. Harrison, H. Vijayakumar, R. Padhye, K. Sen, M. Grace, R. Padhye,
C. Lemieux, K. Sen, L. Simon, H. Vijayakumar et al., “Partemu: Enabling
dynamic analysis of real-world trustzone software using emulation,” in
Proceedings of the 29th USENIX Security Symposium (USENIX Security),
2020.

[43] W. R. Systems, “Wind river simics,” 2021,
https://www.windriver.com/products/simics/.

[44] Q. Feng, R. Zhou, C. Xu, Y. Cheng, B. Testa, and H. Yin, “Scalable
graph-based bug search for firmware images,” in Proceedings of the 2016
ACM SIGSAC Conference on Computer and Communications Security
(CCS), 2016, pp. 480–491.

[45] X. Xu, C. Liu, Q. Feng, H. Yin, L. Song, and D. Song, “Neural
network-based graph embedding for cross-platform binary code similarity
detection,” in Proceedings of the 2017 ACM SIGSAC Conference on
Computer and Communications Security (CCS), 2017, pp. 363–376.

[46] X. Wang, Y. Sun, S. Nanda, and X. Wang, “Looking from the mirror:
evaluating iot device security through mobile companion apps,” in
Proceedings of the 28th USENIX Security Symposium (USENIX Security),
2019, pp. 1151–1167.

12

[47] Q. N. A. LAU Kai Jern, “Qiling framework - advanced binary emulation
framework,” 2020, https://www.qiling.io/.

[48] N. Redini, A. Machiry, R. Wang, C. Spensky, A. Continella, Y. Shoshi-
taishvili, C. Kruegel, and G. Vigna, “Karonte: Detecting insecure multi-
binary interactions in embedded firmware,” in Proceedings of the IEEE
Symposium on Security & Privacy (S&P), 2020, pp. 431–448.

[49] X. Jiang, X. Wang, and D. Xu, “Stealthy malware detection through vmm-
based” out-of-the-box” semantic view reconstruction,” in Proceedings of
the 2007 ACM Conference on Computer and Communications Security
(CCS), 2007, pp. 128–138.

[50] K. Tam, S. J. Khan, A. Fattori, and L. Cavallaro, “Copperdroid: Automatic
reconstruction of android malware behaviors,” in 22nd Annual Network
and Distributed System Security Symposium (NDSS), 2015.

[51] B. Dolan-Gavitt, T. Leek, M. Zhivich, J. Giffin, and W. Lee, “Virtuoso:
Narrowing the semantic gap in virtual machine introspection,” in
Proceedings of the 32nd IEEE Symposium on Security and Privacy
(S&P), 2011, pp. 297–312.

13

