
ARMlock: Hardware-based Fault 
Isolation for ARM

Yajin Zhou, Xiaoguang Wang, Yue Chen, and Zhi Wang

North Carolina State University
Xi’an Jiaotong University
Florida State University



Software is Complicated and Vulnerable

125

86

116

189

102

152

266
249

175

110

43 44
63

74 78

3 7 3 4

27

0

50

100

150

200

250

300

2010 2011 2012 2013 2014

Number of CVEs

Linux Chrome Apache Libpng

2

17 million SLOC 

15 million SLOC 

400 thousands SLOC 

2 million SLOC 



Software is Complicated and Vulnerable

 Code: different sources
 Third-party libraries, plugins …

 Vulnerabilities in one module could compromise the whole 
application

3

Heartbleed



Software Fault Isolation

 SFI: security by isolation
 Split application into different fault domains

 Separate each domain from others

 Compromised fault domains cannot affect others

 Widely used in x86 systems
 Linux kernel: LXFI

 User level applications: Native client, Vx32 …

4

Our work focuses on ARM architecture



ARM Architecture is Popular

5

750 million Android devices in 2013

99% are based on ARM architecture

ARM is catching up in the data

center server market



SFI on ARM Architecture

 Native client for ARM
 Compiler based solution

 Limitations: assumption on memory layout, hard to efficiently support 
self-modifying code, and JIT compiling

 ARMor
 Binary rewriting

 High performance overhead

6



Our Solution: ARMlock

 Strict isolation
 Memory read/write, code execution, system calls

 Low performance overhead
 Sandbox context switch, sandbox itself

 Compatibility
 Memory layout, self-modifying code, JIT compiling

 Leverage an often overlooked hardware feature: Memory domain

7



Background: ARM Memory Domain

8

Domain 0

Domain 1

Domain 2

Domain 14

…

Domain 15

lw r0, [r1]
…
…

lw r1, [r2]

D1D0 D14 D15

Type Value Description

No Access 00 No access permitted

Client 01 Permissions defined by page tables

Reserved 10 Reserved

Manager 11 No permissions check (unlimited access)

0001 … 00 00

X

Virtual memory space

Sandboxed code

DACR Register

ARM domain access control

√



Threat Model 

 OS kernel is trusted

 Host application is benign but could be vulnerable

 External modules: vulnerable or malicious

9

Isolate compromised or malicious modules 
from the host application 



ARMlock Architecture

10

Sandboxed untrusted module

ARMlock kernel 
extension

Host application

Linux kernel

function function

Kernel mode

User mode

Cross-sandbox communication (with the help of ARMlock kernel extension)

System call interposition

data data



Sandbox Creation

 Host application asks ARMlock kernel module to create a sandbox

 Kernel module initializes the sandbox
 Locate first level page table entries 

 Assign different memory domains to the host application and sandboxes

 Memory domain assignment cannot be changed by the sandbox

11



Sandbox Switch

 DACR register is saved in the thread control block 

 DACR register is updated when switching sandboxes

 Only current domain (and kernel) are accessible, not other domains

 Multithreading is naturally supported

 Each CPU core has its own DACR register

12



Cross-sandbox Communication

 Inter-module function call

 Inter-module memory reference

13



Inter-module Function Invocation

 Two new system calls
 ARMlock_CALL: inter-module function call

 ARMlock_RET: inter-module function return

14



Inter-module Function Invocation

 Inter-module function invocation

15

Sandboxed untrusted module

ARMlock kernel 
extension

Host application

Linux kernel

stubcaller

calleegategate

Kernel mode

User mode

Inter-domain transfer (with the help of ARMlock kernel extension)

Intra-domain transfer (with the help of ARMlock user library)



Inter-module Function Invocation

16

Call
Sandbox1

_func

Sandbox 0

Prepare context
Issue ARMlock_CALL

Switch stack etc.
Set PC to entry gate

ARMlock_CALL returns
Prepare context
Call real function

Issue 
ARMlock_RET

Sandbox1
_func

Sandbox 1

Switch stack etc.
Set PC to return gate

ARMlock_RET returns

Restore context
Return

Stub

Entry gate

Return gate

ARMlock kernel module

Caller
Callee



Inter-module Memory Reference

 Kernel assisted memory copy
 Kernel marks both domains as accessible

 Copy data into the destination sandbox

 Restore the DACR register

17



Inter-module Memory Reference

 Shared memory domain: using a domain which is accessible in 
both sandboxes

 Data from sandboxed modules should be sanitized 

18

lw r0, [r1]
…
…

lw r1, [r2]

Sandbox 0

lw r3, [r1]
…
…

lw r5, [r2]

Sandbox 1
Accessible

Non-accessible

Domain 0

Domain 1

Domain 2

Domain 14

…

Domain 15

Memory space

Domain 0

Domain 1

Domain 2

Domain 14

…

Domain 15

Memory space



System Call Interposition

 Recent Linux system has 380+ system calls
 Normal applications may use less than that, e.g., around 60

 More system calls may expose more kernel vulnerabilities

 Host applications in ARMlock could control system calls available 
to sandboxed modules

 Implemented through the seccomp-BPF framework

19



Evaluation

 Security analysis

 Performance overhead
 Sandbox switch latency

 Sandbox itself

20



Security Analysis

 Cross-sandbox communication
 Inter-module function invocation

 Inter-module memory reference

 Kernel assisted memory copy

 Shared memory domain: race condition

21

Sandboxed module

ARMlock

Host application

Linux kernel

1

function function

data data
2



Performance Evaluation: Configuration

22

Item Configuration

CPU ARM1176JZF-S 700MHz

RAM 512MB

OS Raspbian (based on Debian)

Kernel Linux 3.6.11

LMbench Version 2

nbench Version 2.2.3



Sandbox Switch Latency

 Call a simple inc function inside the sandbox
 1 second: 903,343 inter-module calls -- 1.1 μs for each call

23



Sandbox Switch Latency

 One sandbox switch: two system calls

24

2.6
5.8

2778.3 2631

1 1

16.4

3.1

17.4

1 x

10 x

100 x

1,000 x

10,000 x

ARMlock clock exec fork getpid null sig_handle sig_install stat



Performance Overhead

0.584
0.661

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Internal

External

25



Discussion

 Some developer efforts are required
 Refactor the application into domains

 Avoid frequent domain switch

 Need to use short format page table in latest ARM architecture

 Kernel-level sandbox

 Other OS support

26



Takeaway 

 ARMlock: a hardware-based fault isolation for ARM
 Strict isolation

 Low performance overhead

 Better compatibility

27



28

Q&A


