
DriverJar: Lightweight Device Driver Isolation for ARM
Huamao Wu∗, Yuan Chen∗, Yajin Zhou†

Zhejiang University, Hangzhou, China
Yifei Wang, Lubo Zhang

Huawei Technologies Co. ltd, Beijing, China

Abstract—Driver-originated vulnerabilities are well-known threats to
modern monolithic kernels. However, existing driver isolation solutions
either rely on Intel-only or newly-introduced CPU features (e.g., Intel
VMFUNC, ARM MTE), or suffer from performance issues, making them
unsuitable for existing ARM-based devices. In this work, we leverage
a common hardware feature, named hardware watchpoint, to achieve
lightweight driver isolation for off-the-shelf ARM devices. Specifically,
we utilize watchpoints to prevent the possibly compromised driver from
corrupting the rest kernel’s state arbitrarily. We implement a prototype
for ARM64 Linux. The security analysis and performance evaluation
show the efficiency and practicality of our solution.

Index Terms—Driver Isolation, ARM, Watchpoint, Software Fault
Isolation

I. INTRODUCTION

Nowadays, a large number of device drivers have been developed
to extend the functionality and hardware support of the OS kernel.
However, since the quality and stability of device drivers are often
inferior to the core kernel, they are more likely to contain vulner-
abilities compared to the core kernel. Previous study [1] indicates
that about 2/3 of Linux kernel vulnerabilities originate from kernel
modules or device drivers. Nevertheless, since most modern operating
system kernels are monolithic, a driver-originated vulnerability could
be exploited to attack the entire kernel.

One prevailing approach to address the security threats posed
by device drivers is driver isolation, which falls into the following
categories. First, researchers have proposed a series of software-based
solutions [2]–[6] to achieve secure separation between device drivers
and kernels. However, these solutions introduce considerable context-
switching overhead, which can significantly impact the performance
of low-powered devices. Second, some studies have implemented
low-overhead isolation mechanisms based on isolation primitives
provided by the CPU. On the Intel platform, researchers have
proposed isolation solutions based on Extended Page Table (EPT)
[7] and VM Functions (VMFUNC) [8]. As for the ARM platform,
existing hardware-assisted driver isolation solutions [9] [10] rely on
features that are either only supported by the latest processors (i.e.,
Pointer Authentication, Memory Tagging) or deprecated (i.e., Domain
Access Control), preventing them from being used on most existing
devices.

In this paper, we propose DriverJar, a hardware-assisted isolation
framework for protecting the kernel from driver-originated mem-
ory corruption and exploitations. The basic idea is to divide the
(untrusted) device driver and (trusted) core kernel into separate
domains and leverage hardware watchpoint, a commonly supported
debugging feature, to restrict the data access from the isolated driver
to the rest kernel. First, to enforce the protection, each cross-domain
function call between the isolated driver and rest kernel must invoke
a trampoline containing secure gates for watchpoint monitoring
updates. Second, to avoid the watchpoint monitoring being disabled
or bypassed, we carefully design the secure gates and ensure that
the adversary cannot compromise the protection using interrupts,

†: Corresponding author(yajin zhou@zju.edu.cn).
∗: These authors contributed equally to the work.

exceptions, or privileged instructions. Third, we provide a data write
trampoline containing an allowlist check for legitimate kernel object
updates from the isolated driver. In addition, our solution takes into
account the isolated driver’s need for dynamic memory allocation.

We have developed a prototype called DriverJar for AArch64 Linux
5.4.117 and evaluated it on a Hikey970 development board [11].
To evaluate DriverJar, we first performed a security analysis to
show that an adversary cannot bypass the security guarantees of our
system. Then, we conducted experiments to measure the performance
overhead caused by DriverJar. First, we measured the cycle count
required for domain switches. We then benchmarked the modified
kernel, and the results show that the changes we made to the kernel
caused minor performance degradation. Finally, we performed a stress
test on dummy, a software-only network driver. The results show that
DriverJar brings a performance degradation of 14%-17%, which is
comparable to some state-of-the-art solutions.

II. BACKGROUND AND RELATED WORK

A. Device Driver Isolation

Over the years, researchers have explored various ways to separate
device drivers from the monolithic kernel, including isolating drivers
to userspace [5] [6], invoking virtualization [12]–[15], adopting Soft-
ware Fault Isolation (SFI) techniques [2]–[4], and more. However,
these solutions introduce prohibitive context-switching overhead. For
example, instrumenting a network driver with LXFI [4], an SFI-
based solution, increases CPU usage by 2.2–3.7× and introduces
a 35% performance loss while transmitting UDP packets. In order
to improve the performance of driver isolation, several isolation
solutions that take advantage of processor hardware features have
been proposed. For instance, LVDs [8] proposed a lightweight driver
isolation technique based on Intel EPT and VMFUNC. The addition
of Pointer Authentication (PAC) [16] and Memory Tagging Extension
(MTE) [17] extension on the latest ARM processors also makes
hardware-assisted SFI solutions possible [10]. Moreover, a driver
isolation solution based on Domain Access Control (DAC) [9] has
also been proposed. However, since PAC and MTE are currently
supported by the newest ARM processors only, and DAC is a 32-bit
only feature, none of these solutions can be applied to most existing
ARM devices.

B. ARM Watchpoint

Hardware watchpoint is a common self-hosted debugging mech-
anism used to monitor data access to specific memory regions.
Depending on the configuration, a specific type of access to the
monitored memory region incurs a watchpoint exception, which
will be caught and handled by privileged software, such as the OS
kernel. The watchpoint feature on ARM has been used to implement
various security applications. Jang et al. proposed an in-process
memory isolation solution based on watchpoint [18]. They further
offered watchpoint-based emulation of privileged access never (PAN)
and kernel execute-only memory (XOM) [19]. In addition, SelMon
[20] uses watchpoint and data execution prevention (DEP) to help
implement a self-protected kernel integrity monitor.

For current ARM processors, the maximum number of watchpoint-
monitored regions is SoC-dependent and can be up to 16. Each
watchpoint-monitored region is configured by setting its correspond-
ing debug watchpoint value register (DBGWVR(n) EL1, n = 0-15)
and debug watchpoint control register (DBGWCR(n) EL1, n = 0-
15). These watchpoint-related registers are per-core registers, which
enable developers to perform debugging on a thread basis. The
watchpoint value register (DBGWVR) sets up the starting address of
the monitored region. The watchpoint control register (DBGWCR)
comprises important attributes of the monitored region. Specifically,
the BAS and MASK flags determine the monitoring granularity and
size, respectively; the combination of the security state control (SSC)
and the privilege of access control (PAC) flags is used to define the
security state and exception level under which the exception should be
generated; the load store control (LSC) flag determines the type of the
monitored access type as read (0b01), write (0b10), or both (0b11).
In addition to the settings for the watchpoint registers, the monitor
debug events (MDE) flag of the monitor debug system control register
(MDSCR EL1) has to be set to activate the monitoring.

It should be noted that the watchpoint configuration must strictly
comply with the monitoring size and address alignment requirements.
Due to the way the MASK flag is set, the size of each monitored
region is a power of 2. If the size is less or equal to 8 bytes, the
starting address of monitoring must be aligned with a word or double
word; otherwise, the starting address of the monitored region must be
aligned with the monitoring size. If this requirement is not satisfied,
the watchpoint will not generate any exception.

III. ASSUMPTIONS AND THREAT MODEL

In our threat model, we assume the device driver may contain
flaws (such as memory corruption vulnerabilities) that could be
compromised by an adversary. Our goal is to protect the state of
the rest kernel from the adversary’s further corruption by isolating
the vulnerable driver in a separate domain. In addition, we assume
Privilege eXecute Never (PXN) are enabled in the kernel so that the
compromised driver cannot leverage userspace for further corruption.
Besides, a secure boot is also assumed to ensure the benign initial
state of the kernel. Finally, we consider both side-channel and
speculative-execution attacks as out of scope. Defending against such
attacks is orthogonal to our work.

IV. SYSTEM DESIGN

A. Overview

Function Call

 Trampoline

Rest Kernel Isolated Driver

Exit Gate

Entry Gate

Kernel Code Driver Code

Call/Ret

Call/Ret

Driver CodeKernel Data Data-write Trampoline
Write

Fig. 1. The system architecture of DriverJar.

DriverJar aims to prevent an adversary who has compromised
one vulnerable device driver from corrupting the rest kernel’s data

1 entry_gate:
2 disable_irq
3 switch_to_driver_stack
4 enable_wp_monitoring
5 restore_irq
6

7 exit_gate:
8 disable_irq
9 disable_wp_monitoring

10 switch_to_kernel_stack
11 restore_irq

Listing 1: Secure gates for cross-domain function calls.

integrity by hijacking control flow or overwriting sensitive kernel
objects. To this end, DriverJar utilizes a common hardware feature,
namely the hardware watchpoint, to enforce the isolation between
the possibly flawed driver and the rest kernel. Specifically, we put
the isolated driver and the rest kernel into separated domains. When
the execution gets into the isolated driver, DriverJar will set up
watchpoints to monitor the data access to the rest kernel’s memory
region. Any data update to the rest kernel must be authorized and
proxied. Direct or illegal data updates from the isolated driver would
incur a watchpoint exception and thus be caught by the corresponding
handler. Watchpoint monitoring is only disabled when the control
flow leaves the isolated driver. In this way, the rest kernel could keep
safe from data corruption even if the isolated driver is compromised.

However, it is non-trivial to enforce such isolation. Two aspects of
security designs need to be considered to ensure that our watchpoint
monitoring cannot be bypassed.
• Control Flow Security We enable watchpoint monitoring before

the control flow transfers to the isolated driver. As the monitoring
is enabled, it cannot be disabled or bypassed by the isolated device
driver.

• Data Flow Security Since the isolated driver may require updat-
ing data state that does not belong to itself, any data written from
the isolated driver to the rest kernel has to be authorized, and the
least-privilege principle should be enforced.
Fig. 1 shows the overall system architecture of DriverJar. In the

following, we will illustrate our control flow and data flow security
designs, respectively.

B. Control Flow Security

To alter the protection state when the domain transition occurs,
we set up secure gates (including entry/exit gates) to handle cross-
domain calls between the isolated driver and the rest kernel. The
entry gates are responsible for the kernel-to-driver domain switch
(including watchpoint setup), while the exit gates does the opposite.

As shown in Listing 1, we have carefully designed our secure gates
to avoid being exploited by attackers. The core idea is to ensure the
execution after disabling the watchpoint monitoring in the secure
gates cannot be manipulated by the possibly compromised driver.

First, instead of reusing the kernel stack, DriverJar allocates a sepa-
rate driver stack on demand for the driver execution. The kernel/driver
stack switch is done in the secure gates. Note that the original stack
pointer will be saved into the task_struct for restoration later
to support nested cross-domain calls. Using a separate driver stack
brings two benefits. On the one hand, the memory used by the kernel
stack is monitored by the watchpoint during the driver execution
(cannot be corrupted by the driver execution), so it is necessary to
switch to a writable stack for functionality. On the other hand, this
blocks the possibly compromised driver from interfering with the
execution after leaving the isolated driver by corrupting stack states.

Second, in the code enable_wp_monitoring and disable
_wp_monitoring, enabling and disabling watchpoint monitoring

operations are followed by additional instructions (i.e. cmp and
b.ne) to double-check the watchpoints are set properly. Such a
design blocks the exploitation of watchpoint-related system register
update instructions in the secure gates by a control-flow hijacking
attack, i.e., directly jumping to the instruction in the secure gates to
disable the watchpoint. We borrow this design trick from the widely
discussed MPK-based security hardening solutions [21], [22].

Third, we include memory barriers and interrupt control instruc-
tions in secure gates to prevent malicious interrupts and side effects of
out-of-order execution. Last but not least, each operation in the secure
gates is implemented as an inline assembly function, and there is no
indirect control flow transfer in the secure gates to prevent control
hijacking.

Apart from the explicit cross-domain function calls, interrupts
and exceptions also need to be considered for domain switching.
Because handling interrupt or exception with watchpoint monitoring
and driver stack could bring functionality issues and possibly crash
the kernel. Therefore, we modified the entry.S file, which contains
the entry/exit for interrupt/exception handling. When an interrupt or
exception occurs during the driver execution, DriverJar will save the
current watchpoint state and the stack pointer, disable watchpoint
monitoring, and switch to the kernel stack before handling the
interrupt/exception. When the interrupt/exception handler returns,
DriverJar restores the original watchpoint state and stack pointer if
needed. In this way, interrupt/exception handling functions correctly
as before. Moreover, two benefits are brought by such a design.
First, it allows driver function invocation (which requires domain
switching) in the interrupt handling, thus satisfying the kernel’s
functionality requirement. Second, it makes DriverJar transparent to
the kernel scheduler and, thus, no intrusive modification for the kernel
scheduler.

Furthermore, DriverJar ensures that there are no non-secure
watchpoint-related system register updates inside the kernel that the
compromised driver could exploit. To this end, DriverJar performs
a code inspection for the driver at the load time to ensure no
watchpoint-related system register update instructions other than
secure gates. As far as we know, watchpoint is seldom used by drivers
in the production environment as it is a debugging feature. Therefore,
disallowing the existence of watchpoint-related instructions in the
driver will not impede the driver’s functionality. Moreover, we
patch the core kernel (mainly hw_breakpoint.c) to ensure the
occurrence of the corresponding instructions is secure.

By combining all the above designs, DriverJar ensures that watch-
point monitoring cannot be disabled or bypassed by the possibly
compromised driver and thus control flow security is enforced.

C. Data Flow Security

The isolated driver may need to update kernel objects during its
execution. Therefore, DriverJar introduces the data write trampoline,
which wraps normal data updates with additional operations (such
as watchpoint monitoring switch). Moreover, to block the possibly
compromised driver from abusing the driver’s data write trampolines,
we include a dynamic allowlist check in our design. Allowlist is used
in the data write trampoline to check whether the target kernel object
is allowed access. During driver development, only a well-defined
subset of kernel objects necessary for the driver to function would
be included in the allowlist. Furthermore, the allowlist is designed to
get updated on demand during its lifecycle so that the least privilege
principle is always enforced. Specifically, before the kernel calls an
isolated driver function for the first time, an allowlist is initialized by
DriverJar. Whenever the isolated driver invokes the kernel function

1 #define NEW_VALUE(dst, op, ...) ({\
2 typeof(dst) _dst = (dst); \
3 _dst op __VA_ARGS__; })
4

5 #define SECURE_WRITE(dst, len, op, ...) do {\
6 typeof(dst) _dst = NEW_VALUE((dst), op, __VA_ARGS__); \
7 disable_wp(); \
8 if (is_permitted(&(dst), (len))) (dst) = _dst; \
9 enable_wp(); } while (0)

10

11 // Example: updating dest (int from kernel).
12 // *dest = source + 4;
13 SECURE_WRITE(*dest, sizeof(int), =, source + 4);
14 // *dest ++;
15 SECURE_WRITE(*dest, sizeof(int), ++);

Listing 2: Design and usage of the SECURE WRITE macro, which
generates a data write trampoline.

TABLE I
ANNOTATION MACROS PROVIDED FOR DRIVER DEVELOPERS

Annotation macro Description

WRAP n()1 Generate wrapper for driver function
IMPORT n()1 Generate wrapper for kernel function
SECURE WRITE() Perform a data update with allowlist check
ALLOW() Append an allowlist entry
CHECK() Check whether a function parameter is legal
PURGE() Remove an allowlist entry

1 n means there are n parameters for the function.

API during its execution, DriverJar will update the allowlist on
demand if needed. The allowlist would be released after the initial
driver function invocation is finished. In addition, the allowlist is
implemented as a hash table for constant-time lookup. The pointer
of the allowlist is stored in the task_struct since it couples with
the thread execution.

Listing 2 shows the design and usage of our data write trampoline.
To perform a kernel object update, the trampoline first calculates
the new value of the kernel object. Then, the trampoline temporarily
disables watchpoint monitoring and checks whether the data update is
legal with the allowlist (i.e. is_permitted). If the starting address
and length match an allowlist entry, the trampoline applies the new
value and re-enables watchpoint monitoring.

D. Dynamic memory allocation for driver

Apart from kernel data integrity, DriverJar also needs to ensure
that the device driver can still function properly after being isolated.
Since we do not restrict data reads and kernel function invocation
is supported, most of the external interaction needs of the isolated
device driver can be met. However, we also need to consider the
operational requirements of the device driver’s code, such as dynamic
memory allocation. To solve this challenge, DriverJar chooses to
maintain a dedicated memory pool for each isolated driver. The
memory pool is located in the driver’s memory region for direct
access. In addition, common memory management primitives (e.g.,
kmalloc, vmalloc) are provided for easy-to-use.

E. Developer tools

Table I shows the annotation macros we provided to allow driver
developers to adapt DriverJar for their driver. Specifically, WRAP n,
IMPORT n, ALLOW, CHECK, PURGE are used for the generation of
driver/kernel function wrappers, which wrap the original driver/kernel
function to perform cross-domain calls. There are mainly two tasks
for the wrappers: (1) enable/disable the watchpoint monitoring by
leveraging secure gates. (2) allowlist management, including ini-
tialization, append, and removal. In addition, function parameters

1 /*
2 static netdev_tx_t dummy_xmit(struct sk_buff *skb,
3 struct net_device *dev)
4 */
5 static WRAP_2(dummy_xmit, netdev_tx_t,
6 struct sk_buff *, struct net_device *,
7 // Allowlist operations before call(if any)
8 ALLOW(arg0, sizeof(struct sk_buff))
9 ALLOW(arg1, sizeof(struct net_device)),

10 // Allowlist operations after call(if any)
11 DO_NOTHING()
12)
13 /* Generated wrapper for dummy_xmit() */
14 static netdev_tx_t dummy_xmit_wrapper(
15 struct sk_buff *arg0, struct net_device *arg1)
16 {
17 allowlist_init();
18 ALLOW(arg0, sizeof(struct sk_buff));
19 ALLOW(arg1, sizeof(struct net_device));
20 entry_gate();
21 netdev_tx_t _ret = dummy_xmit(arg0, arg1);
22 exit_gate();
23 allowlist_free();
24 return _ret;
25 }
26 /* void kfree(const void *x) */
27 static IMPORT_VOID_1(kfree,
28 const void *,
29 // Allowlist operations before call(if any)
30 CHECK(arg0),
31 // Allowlist operations after call(if any)
32 PURGE(arg0)
33)
34 /* Generated wrapper for kfree */
35 static void kfree_wrapper(const void *arg0)
36 {
37 exit_gate();
38 CHECK(arg0);
39 kfree(arg0);
40 PURGE(arg0);
41 entry_gate();
42 return;
43 }

Listing 3: Annotation macro usage examples.

could also be checked within the wrapper with the annotation of
CHECK. Listing 3 shows an example usage of our annotation macros
for the kernel/driver function APIs and the corresponding generated
wrappers. As for SECURE WRITE annotation macro, it generates
data write trampolines for kernel object updates. An example usage
could be found in Listing 2.

At the development stage, driver developers could leverage the
above-provided annotation macros to define the driver-kernel in-
teraction behaviors. Then, the corresponding driver/kernel function
wrappers and data write trampolines would be generated based on
the developer’s annotation and thus DriverJar’s isolation is enabled.

V. IMPLEMENTATION DETAILS

We have implemented a prototype of DriverJar on a Hikey970
development board based on AArch64 Linux kernel version 5.4.117.
Currently, our prototype only supports one isolation domain for the
kernel drivers. It is because of the limited number of watchpoint
counts (four pairs) in the development board. Our design could be
extended to provide more isolation domains for kernel drivers as
long as more watchpoints are provided. Detailed discussion about
this is illustrated in Section VIII. In this section, we illustrate some
implementation details not covered before.

We adjust the kernel memory layout to meet the watchpoint’s
alignment requirements and achieve complete protection of kernel
data regions. The adjusted kernel space memory layout is shown in
Fig. 2. First, we reduce the size of the vmalloc area to 4GB and
two watchpoints are used to monitor it during driver isolation. To
get vmalloc area start address 2GB-aligned, we expand the size of

memory
ffff 0000 0000 0000

ffff 0001 c000 0000

unused

modules ffff 8000 0800 0000

vmalloc

ffff fdff 8000 0000misc.

memory
ffff 0000 0000 0000

ffff 0000 8000 0000

unused

modules
ffff 8000 0800 0000

ffff 8000 8000 0000
vmalloc

ffff 8001 8000 0000

driver

ffff fdff 8000 0000misc.

ffff 8000 1000 0000

Range 1

Range 2,3

Range 4

unused unused
ffff fe00 0000 0000

Fig. 2. The original and modified kernel memory layout of the Hikey970
board. The watchpoint-protected areas are marked in red.

modules area from 128MB to 1920MB. The remaining vmalloc
area is used as the isolated driver’s data region. Then, we use a
2GB watchpoint to monitor fixed, PCI I/O and vmemmaps area
(shown as the ”misc.” area in Fig. 2). Finally, we shrink the direct
mapping region of the kernel (i.e, memory area in Fig. 2) to 2GB
so that it could be fully covered by the remaining watchpoint. Note
that we make the above restrictions due to the lack of watchpoints
in our development board. In another word, these restrictions could
be released with more watchpoints provided.

In addition, we implement our dedicated memory pool for the
isolated driver based on Linux genpool mechanism. We allocate
the memory pool from the driver’s memory region. Moreover, the
different granularity of memory allocation is supported for the
memory pool to avoid memory fragmentation problems and improve
performance.

VI. SECURITY ANALYSIS

The security of DriverJar mainly depends on the enforcement of
watchpoint monitoring during driver execution. Since the core kernel
is patched to ensure the occurrence of watchpoint update instructions
is all sanitized and DriverJar verifies there is no watchpoint update
instruction in the driver at load time, the possibly compromised
driver could only disable watchpoint monitoring by leveraging the
secure gates. As described before, DriverJar has carefully designed
the secure gates to ensure the possibly compromised driver cannot
manipulate the execution after the secure gates disable watchpoint
monitoring. Thus, the secure gates could not be manipulated to bypass
watchpoint monitoring during driver execution.

The possibly compromised driver may corrupt kernel data in-
tegrity by manipulating kernel objects specified in the allowlist,
since allowlist configuration highly relies on the developer’s domain
knowledge. To mitigate this threat, we provide a static analysis
tool based on libclang [23] to help developers with their allowlist
configuration. We regard exploring automatic allowlist generation as
our future work.

VII. PERFORMANCE EVAULATION

In this section, we measure the performance overhead of DriverJar
on a development board. The experiments have been conducted on
the 96boards Hikey970 platform [11], which ships with a Cortex-A73
2.36GHz quad-core processor and a Cortex-A53 1.8GHz quad-core
processor in a big.LITTLE design and 6GB of DRAM. Considering
that DriverJar may have different performance effects on big and

TABLE II
ROUND-TRIP CYCLES(RTC)

Big core Little core

RTC Stdev RTC Stdev

Function call 166 0.00 249 6.62
Data update (w/o check) 57 0.30 30 3.58

small cores, we conduct the following experiments on big and small
cores separately.

A. Switching Overhead

To investigate the performance overhead imposed by the domain
switching, we use the ARM performance counter to get the required
cycle count of each cross-domain function call and data update. In
each operation, we count the cycle count of 100 empty function calls
and the difference between the cycle count of 100 normal data updates
and 100 wrapped data updates. Each operation is repeated 10 times
for accurate results. The average results are reported in Table II,
which shows the efficiency of our trampoline implementation. As a
comparison, the round-trip cycle of a hypervisor call (typically used
for context switching in ARM virtualization) is over 500 on Cortex-
A53 cores according to [24].

B. OS Micro Benchmark

Apart from domain switching, DriverJar also imposes a perfor-
mance penalty on basic OS operations, as we made code changes
on interrupt handling and task creation. We measure such overhead
using the LMBench test suite. Table III reports the results of the
experiments, which indicates that the the changes we made to
the kernel barely impacts the OS performance except for some
operations related to task creation. This performance degradation is
expected as the kernel allocates driver stack for each newly created
task_struct, regardless of whether the corresponding task will
execute any code from the isolated driver.

C. Isolated Device Driver Benchmark

We use the dummy driver to measure the performance overhead
when our solution is applied to a ”fast” device driver. Dummy
is a software-only driver that emulates an infinitely fast network
adapter, which allows us to stress the performance overhead without
hitting any artificial hardware limits. In this experiment, we use three
versions of the dummy driver, one unmodified and the other two
isolated, with allowlist checking enabled and disabled, respectively.
By comparing the performance test results of the isolated drivers
with those of the original dummy driver, we can see how much the
domain switching and allowlist checking affect the performance. We
use the iperf2 benchmark to measure the transmit bandwidth of the
MTU-sized packets.

We report total packet transmission I/O requests per second (IOPS)
across all CPU cores, as depicted in Fig.3. When using only one
big core for testing, the non-isolated driver achieved 281K IOPS,
and the isolated drivers achieved 248K IOPS (88.4% of the non-
isolated performance) and 234K IOPS (83.6% of the non-isolated
performance), depending on whether the allowlist checking is en-
abled. When testing on a single little core, the non-isolated driver
achieved 118K IOPS, and the isolated drivers achieved 110K IOPS
(93.5% of the non-isolated performance) and 100K IOPS (85.5% of
the non-isolated performance) respectively. With all cores utilized,
the non-isolated can achieve 1340K IOPS, and the isolated drivers
achieved 1238K IOPS (92.4% of the non-isolated performance) and

0

200

400

600

800

1000

1200

1400

1600

1 little 2 little 4 little 1 big 2 big 4 big All cores

IO
P

S(
K

)

baseline

isolated w/o allowlist

isolated w/ allowlist

Fig. 3. Performance comparation of the non-isolated and isolated dummy
drivers.

1151K IOPS (85.9% of the non-isolated performance) respectively.
In sum, DriverJar delivers a 14%-17% performance reduction for the
isolated dummy driver. Considering that the dummy driver does not
include any data processing operation in the packet-sending process,
we expect a lower performance reduction when DriverJar is applied
to real-world device drivers.

In addition, the results also show that the efficiency of our
solution is comparable to state-of-the-art hardware-assisted solutions.
For instance, HAKC [10], an isolation solution based on PAC and
MTE, estimated a 20% maximum performance degradation in its
experiments with ipv6.ko. The LVDs solution [8], which is based
on EPT and VMFUNC, also used a software-only network device
driver to measure its high-bound performance overhead. In single-
threaded tests, LVDs introduced a performance reduction of 28%-
35%, depending on whether the processor’s extended state needs to
be saved or not.

VIII. DISCUSSION

Limited number of watchpoints Currently, our prototype only
supports one isolation domain for kernel drivers due to the limited
watchpoints (only four) in our development board. However, Driver-
Jar could scale to multiple domain isolation with more watchpoints
provided. Since the maximum number of watchpoints can be up to
16, there could be at most 12 isolation domains supported with a
straightforward one-watchpoint-for-one-driver design. Furthermore,
we regard exploring more scalable lightweight driver isolation so-
lutions for ARM devices as our future work.
Porting efforts During the driver porting progress, we realize that
generating and replacing wrappers for kernel functions called by
device drivers can be largely automated. To facilitate pointer replace-
ment and cross-domain data update wrapping, we implemented a
source code analysis tool based on libclang for identifying control and
data flows. However, due to the limited accuracy of our tool, manual
efforts cannot be completely avoided. In general, modifying existing
device drivers to apply our solution is still labor-intensive and requires
some understanding of how that device driver works. Exploring fully
automatic porting support for legacy drivers is regarded as our future
work.
Optimizations For kernel functions that do not use the stack, such
as atomic operations, we remove the switch stack operation from
their wrapper to reduce performance loss. In addition, in our current
implementation, the driver stack is coupled with a thread as long as
the thread invokes the isolated driver and is not freed until the thread
exiting. This brings inefficient memory utilization. In the future, it
could be reduced by preparing a per-driver stack pool and allocating
the driver stack to threads on demand.

TABLE III
LMBENCH RESULTS (IN µS).

Big core Little core

Baseline Modified Stdev Overhead Baseline Modified Stdev Overhead

null syscall 0.19 0.19 0.000 1.00x 0.29 0.28 0.005 0.99x
open/close 2.65 2.62 0.020 0.99x 5.82 5.87 0.034 1.01x
stat 1.37 1.37 0.006 1.00x 2.58 2.61 0.015 1.01x
sig. handler inst 0.43 0.43 0.000 1.00x 0.63 0.64 0.009 1.01x
sig. handler hndl 8.83 8.91 0.005 1.01x 11.99 11.90 0.000 0.99x
fork+exit 124.50 129.40 2.059 1.04x 268.10 281.50 5.971 1.05x
fork+execv 350.00 355.20 4.750 1.01x 735.40 775.00 24.900 1.05x
/bin/sh -c 942.30 963.70 5.728 1.02x 2244.80 2391.50 29.104 1.07x
page fault 0.43 0.43 0.006 1.00x 1.43 1.45 0.012 1.01x
mmap 670.00 672.20 2.182 1.00x 1631.60 1682.10 16.736 1.03x

IX. CONCLUSION

We propose DriverJar, a lightweight device driver isolation so-
lution for ARM devices. DriverJar utilizes hardware watchpoint, a
commonly-available feature on off-the-shelf devices, to prevent data
of the rest kernel from being corrupted by an adversary through
driver vulnerability. To prevent the protection from being bypassed
or compromised, we adopted several security designs to harden
DriverJar. We implemented a prototype on AArch64 Linux 5.4.117.
The performance evaluation shows that DriverJar causes trivial loss
in system performance and small overhead to the isolated driver.

ACKNOWLEGMENTS

The authors are partially supported by the National Key R&D
Program of China (No. 2022YFE0113200), the National Natural
Science Foundation of China (NSFC) under Grant U21A20464. Any
opinions, findings, and conclusions or recommendations expressed in
this material are those of the authors and do not necessarily reflect
the views of funding agencies.

REFERENCES

[1] H. Chen, Y. Mao, X. Wang, D. Zhou, N. Zeldovich, and M. F.
Kaashoek, “Linux kernel vulnerabilities: State-of-the-art defenses and
open problems,” in Proceedings of the 2nd Asia-Pacific Workshop on
Systems, 2011, pp. 1–5.

[2] M. M. Swift, S. Martin, H. M. Levy, and S. J. Eggers, “Nooks: An
architecture for reliable device drivers,” in Proceedings of the 10th
workshop on ACM SIGOPS European workshop, 2002, pp. 102–107.

[3] M. Castro, M. Costa, J.-P. Martin, M. Peinado, P. Akritidis, A. Donnelly,
P. Barham, and R. Black, “Fast byte-granularity software fault isolation,”
in Proceedings of the 22nd ACM symposium on Operating systems
principles (SOSP), 2009, pp. 45–58.

[4] Y. Mao, H. Chen, D. Zhou, X. Wang, N. Zeldovich, and M. F. Kaashoek,
“Software fault isolation with api integrity and multi-principal modules,”
in Proceedings of the 23rd ACM Symposium on Operating Systems
Principles (SOSP), 2011, pp. 115–128.

[5] S. Boyd-Wickizer and N. Zeldovich, “Tolerating malicious device drivers
in linux,” in Proceedings of 2010 USENIX Annual Technical Conference
(USENIX ATC 10), 2010.

[6] W. Qiang, K. Zhang, and H. Jin, “Reducing tcb of linux kernel
using user-space device driver,” in Proceedings of 2016 International
Conference on Algorithms and Architectures for Parallel Processing,
2016, pp. 572–585.

[7] V. Narayanan, A. Balasubramanian, C. Jacobsen, S. Spall, S. Bauer,
M. Quigley, A. Hussain, A. Younis, J. Shen, M. Bhattacharyya et al.,
“Lxds: Towards isolation of kernel subsystems,” in Proceedings of 2019
USENIX Annual Technical Conference (USENIX ATC 19), 2019, pp.
269–284.

[8] V. Narayanan, Y. Huang, G. Tan, T. Jaeger, and A. Burtsev, “Lightweight
kernel isolation with virtualization and vm functions,” in Proceedings of
the 16th ACM SIGPLAN/SIGOPS International Conference on Virtual
Execution Environments (VEE), 2020, p. 157–171.

[9] V. J. M. Manès, D. Jang, C. Ryu, and B. B. Kang, “Domain isolated ker-
nel: A lightweight sandbox for untrusted kernel extensions,” Computers
& Security, vol. 74, pp. 130–143, 2018.

[10] D. McKee, Y. Giannaris, C. Ortega, H. Shrobe, M. Payer, H. Okhravi,
and N. Burow, “Preventing kernel hacks with hakcs,” in Proceedings
of Network and Distributed System Security Symposium 2022 (NDSS),
2022.

[11] “HiKey970 - 96Boards(November 2022),” https://www.96boards.org/
product/hikey970/.

[12] J. LeVasseur, V. Uhlig, J. Stoess, and S. Götz, “Unmodified device
driver reuse and improved system dependability via virtual machines.” in
Proceedings of 2004 USENIX Symposium on Operating Systems Design
and Implementation (OSDI), vol. 4, no. 19, 2004, pp. 17–30.

[13] R. Nikolaev and G. Back, “Virtuos: An operating system with kernel
virtualization,” in Proceedings of the 24th ACM Symposium on Operating
Systems Principles (SOSP), 2013, pp. 116–132.

[14] Y. Sun and T.-c. Chiueh, “Side: Isolated and efficient execution of un-
modified device drivers,” in Proceedings of the 43rd Annual IEEE/IFIP
International Conference on Dependable Systems and Networks (DSN),
2013, pp. 1–12.

[15] A. Srivastava and J. T. Giffin, “Efficient monitoring of untrusted kernel-
mode execution.” in Proceedings of 2011 Network and Distributed
System Security Symposium (NDSS), 2011.

[16] Qualcomm, “Pointer Authentication on ARMv8.3 - Design and
Analysis of the New Software Security Instructions (November
2022),” https://www.qualcomm.com/media/documents/files/
whitepaper-pointer-authentication-on-armv8-3.pdf.

[17] ARM, “Developments in the ARM A-Profile Architecture:
Armv8.6-A (November 2022),” https://community.arm.com/
arm-community-blogs/b/architectures-and-processors-blog/posts/
arm-architecture-developments-armv8-6-a.

[18] J. Jang and B. B. Kang, “In-process memory isolation using hardware
watchpoint,” in Proceedings of the 56th ACM/IEEE Design Automation
Conference (DAC), 2019, pp. 1–6.

[19] J. Jang and B. B. Kang, “Revisiting the arm debug facility for os kernel
security,” in Proceedings of the 6th ACM/IEEE Design Automation
Conference (DAC), 2019, pp. 1–6.

[20] J. Jang and B. B. Kang , “Selmon: reinforcing mobile device security
with self-protected trust anchor,” in Proceedings of the 18th International
Conference on Mobile Systems, Applications, and Services, 2020, pp.
135–147.

[21] A. Vahldiek-Oberwagner, E. Elnikety, N. O. Duarte, M. Sammler,
P. Druschel, and D. Garg, “Erim: Secure, efficient in-process isolation
with protection keys (mpk),” in Proceedings of the 28th USENIX Security
Symposium (USENIX Security 19), 2019, pp. 1221–1238.

[22] J. Gu, X. Wu, W. Li, N. Liu, Z. Mi, Y. Xia, and H. Chen, “Harmo-
nizing performance and isolation in microkernels with efficient intra-
kernel isolation and communication,” in 2020 USENIX Annual Technical
Conference (USENIX ATC 20), 2020, pp. 401–417.

[23] “libclang: C Interface to Clang(November 2022),” https://clang.llvm.org/
doxygen/group CINDEX.html.

[24] D. Kwon, H. Yi, Y. Cho, and Y. Paek, “Safe and efficient implementation
of a security system on arm using intra-level privilege separation,” ACM
Transactions on Privacy and Security (TOPS), vol. 22, no. 2, pp. 1–30,
2019.

https://www.96boards.org/product/hikey970/
https://www.96boards.org/product/hikey970/
https://www.qualcomm.com/media/documents/files/whitepaper-pointer-authentication-on-armv8-3.pdf
https://www.qualcomm.com/media/documents/files/whitepaper-pointer-authentication-on-armv8-3.pdf
https://community.arm.com/arm-community-blogs/b/architectures-and-processors-blog/posts/arm-architecture-developments-armv8-6-a
https://community.arm.com/arm-community-blogs/b/architectures-and-processors-blog/posts/arm-architecture-developments-armv8-6-a
https://community.arm.com/arm-community-blogs/b/architectures-and-processors-blog/posts/arm-architecture-developments-armv8-6-a
https://clang.llvm.org/doxygen/group__CINDEX.html
https://clang.llvm.org/doxygen/group__CINDEX.html

	Introduction
	Background and Related Work
	Device Driver Isolation
	ARM Watchpoint

	Assumptions and Threat Model
	System Design
	Overview
	Control Flow Security
	Data Flow Security
	Dynamic memory allocation for driver
	Developer tools

	Implementation Details
	Security Analysis
	Performance Evaulation
	Switching Overhead
	OS Micro Benchmark
	Isolated Device Driver Benchmark

	Discussion
	Conclusion
	References

