
54

Time-travel Investigation: Toward Building a Scalable Attack
Detection Framework on Ethereum

SIWEI WU, Zhejiang University & Key Laboratory of Blockchain and Cyberspace Governance

of Zhejiang Province

LEI WU, YAJIN ZHOU, and RUNHUAI LI, Zhejiang University

ZHI WANG, Florida State University

XIAPU LUO, The Hong Kong Polytechnic University

CONG WANG, City University of Hong Kong

KUI REN, Zhejiang University

Ethereum has been attracting lots of attacks, hence there is a pressing need to perform timely investigation

and detect more attack instances. However, existing systems suffer from the scalability issue due to the fol-

lowing reasons. First, the tight coupling between malicious contract detection and blockchain data importing

makes them infeasible to repeatedly detect different attacks. Second, the coarse-grained archive data makes

them inefficient to replay transactions. Third, the separation between malicious contract detection and run-

time state recovery consumes lots of storage.

In this article, we propose a scalable attack detection framework named EthScope, which overcomes the

scalability issue by neatly re-organizing the Ethereum state and efficiently locating suspicious transactions. It

leverages the fine-grained state to support the replay of arbitrary transactions and proposes a well-designed

schema to optimize the storage consumption. The performance evaluation shows that EthScope can solve the

scalability issue, i.e., efficiently performing a large-scale analysis on billions of transactions, and a speedup of

around 2,300× when replaying transactions. It also has lower storage consumption compared with existing

systems. Further analysis shows that EthScope can help analysts understand attack behaviors and detect

more attack instances.

CCS Concepts: • Security and privacy→ Distributed systems security;

Additional Key Words and Phrases: Ethereum, attack detection, vulnerability

This work is partially supported by the National Natural Science Foundation of China under Grant No. 62172360, Leading

Innovative and Entrepreneur Team Introduction Program of Zhejiang (Grant No. 2018R01005), the Fundamental Research

Funds for the Central Universities (Grant No. 2021FZZX001-26), Research Grants Council of Hong Kong under Grants No.

CityU 11217819, No. CityU 11217620, No. R6021-20F, Research Grants Council of the Hong Kong Special Administrative

Region under Gants No. PolyU15222320 and No. PolyU15219319. Any opinions, findings, and conclusions or recommenda-

tions expressed in this material are those of the authors and do not necessarily reflect the views of funding agencies.

Authors’ addresses: S. Wu, Zhejiang University & Key Laboratory of Blockchain and Cyberspace Governance of Zhe-

jiang Province, Hangzhou, China; email: wusw1020@zju.edu.cn; L. Wu, Y. Zhou (corresponding author), R. Li, and K.

Ren, Zhejiang University, Hangzhou, China; emails: {lei_wu, yajin_zhou, 21821327, kuiren}@zju.edu.cn; Z. Wang, Florida

State University, Tallahassee, US; email: zwang@cs.fsu.edu; X. Luo, The Hong Kong Polytechnic University, Hong Kong,

China; email: csxluo@comp.polyu.edu.hk; C. Wang, City University of Hong Kong, Hong Kong, China; email: congwang@

cityu.edu.hk.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2022 Association for Computing Machinery.

1049-331X/2022/04-ART54 $15.00

https://doi.org/10.1145/3505263

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 3, Article 54. Publication date: April 2022.

https://orcid.org/0000-0003-1675-5283
https://orcid.org/0000-0002-9082-3208
mailto:permissions@acm.org
https://doi.org/10.1145/3505263

54:2 S. Wu et al.

ACM Reference format:

Siwei Wu, Lei Wu, Yajin Zhou, Runhuai Li, Zhi Wang, Xiapu Luo, Cong Wang, and Kui Ren. 2022. Time-travel

Investigation: Toward Building a Scalable Attack Detection Framework on Ethereum. ACM Trans. Softw. Eng.

Methodol. 31, 3, Article 54 (April 2022), 33 pages.

https://doi.org/10.1145/3505263

1 INTRODUCTION

With an explosive growth of the blockchain technique, Ethereum [2] has become one of the rep-
resentative platforms. One reason is due to its inborn support of smart contracts. Developers use
smart contracts to build Decentralized Applications (DApps), ranging from gaming, lottery,
Decentralized Finance (DeFi), and cryptocurrency, e.g., ERC20 tokens [6].

At the same time, attacks targeting Ethereum are increasing. By exploiting the vulnerabilities of
smart contracts, attackers could make huge profits in a short time. For instance, in April 2016,
attackers exploited the re-entrancy vulnerability in the DAO smart contract and stole around
3.6 million Ether [53]. Attackers used the similar vulnerability to attack the decentralized exchange
Uniswap [34] (July 2019) and DeFi application Lend.Me [33] (April 2020). Besides, lots of other
types of attacks have been observed in the wild [19–21].

Accordingly, there is a pressing need for the security community to perform timely investiga-
tions on attacks and detect more attack instances that were not revealed. This requires the capa-
bility to quickly locate suspicious transactions based on various types of public information. For
instance, suppose there is a reported attack to a smart contract (the victim contract) on a public
forum, but the details of such an attack are unknown. To understand the attack, an analyst needs
to locate suspicious transactions that interact with the victim contract, and further construct the
callgraph between the victim contract and others to understand their behaviors. After that, the
analyst may need to detect more attack instances. In particular, he or she further locates candidate
transactions1 that are potentially related to the attack and replay them. By doing so, the analyst can
monitor the runtime states of a smart contract and hook into its execution to detect more attacks.
Figure 1 shows this flow.

Note that the investigation may continuously repeat the steps in Figure 1. That is because the
understanding of an attack needs multiple rounds of querying and analyzing transactions. This
raises the challenge that the analysis framework should be scalable to a large number of transac-

tions (until July 5, 2020, Ethereum has 754,614,255 normal transactions and 962,171,044 internal
transactions, respectively), i.e., efficiently locating and replaying transactions.2

Limitations of existing systems. Though multiple systems [38, 43, 44, 52, 58] have been pro-
posed to detect malicious smart contracts,3 the scalability issue makes them ineffective to perform
the time-travel investigation due to the following reasons.

• Limitation I: Tight Coupling between malicious contract detection and blockchain data im-

porting. Some systems import the entire blockchain data from the genesis block and replay
historical transactions. During this process, malicious contracts are detected based on pre-
defined rules. The importing process is time-consuming (about ten days) and cannot be

1To avoid the confusion with suspicious transactions used in step I, we call transactions that are potentially related to the

attack in this step as candidate transactions.
2Because the investigation involves the replay of transactions to monitor the Ethereum state, it is like a time travel to

certain points in time, hence the name time-travel investigation.
3In this article, we interchangeably use the following two terms, i.e., malicious smart contracts and attacks, because attacks

are usually automatically performed by malicious smart contracts.

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 3, Article 54. Publication date: April 2022.

https://doi.org/10.1145/3505263

Time-travel Investigation 54:3

Fig. 1. The typical flow of an investigation of attacks on Ethereum.

repeated. It is inflexible to repeatedly replay transactions, revise and debug detection rules,
a considerable limitation to detect new attack instances.

• Limitation II: Coarse-grained archive data. To solve the previous limitation, systems could
leverage the archive mode [23] of popular Ethereum clients to repeatedly replay arbitrary
transactions, after importing the data once. However, the historical states are too coarse-
grained to efficiently replay transactions, since unnecessary transactions are executed (Sec-
tion 3.1). Our evaluation shows that it costs more than 47 min to replay 100 normal transac-
tions. This is not scalable for real attack detection, which needs to replay tens of thousands
and even millions of transactions (Section 5.1.3).

• Limitation III: Huge storage requirements. Instead of using the coarse-grained archive data,
recent systems recover and store the runtime information (called “logical relation” in Refer-
ence [58]) into a database. The further detection is based on the stored logical relation. This
avoids the cost of repeatedly replaying transactions. However, the storage for the logical
relation is huge. For instance, the logical relation database for blocks ranging from 7,000,000
to 7,200,000 consumes 2,949 GB [58]. Given the fact that Ethereum has around 10,400,000
blocks (as of July 5, 2020) and this number is still increasing, it is not practical to detect
attacks in the whole Ethereum blocks.

Our approach. Our system takes the following approaches to overcome the limitations.

• Solution to limitation I: Our system does not perform the detection during the blockchain
importing process. Instead, we save the Ethereum states, e.g., internal transactions, created
smart contract code, into a database. Further detection is based on the saved states to locate
suspicious transactions. This decouples the detection and the importing process.

• Solution to limitation II: Our system replays arbitrary transactions in a scalable way. This
is due to the well-designed and fine-grained states that have been retrieved in the previous
step. By doing so, there is no need to replay unnecessary transactions in our system. For in-
stance, our system only needs around one second to replay the same 100 normal transactions
that consumed 47 min in the archive mode (Table 6).

• Solution to limitation III: Our detection is performed at the same time when replaying
transactions. It provides a practical way for an analyst to specify detection rules, which are
executed when replaying transactions. Thanks to the efficient replay engine, our system
does not need to save unnecessary runtime information. For instance, our system only con-
sumes 1,844 GB storage for the historical states in the 10.5 million blocks (as of July 22, 2020),

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 3, Article 54. Publication date: April 2022.

54:4 S. Wu et al.

compared with 2,949 GB needed for 0.2 million blocks in TxSpector [58]. This makes the
detection spanning all Ethereum blocks possible.

System Implementation. With the scalability requirement in mind, we have implemented an
analysis framework named EthScope with three components.

Specifically, the first component, i.e., data aggregator, collects and recovers the critical
blockchain state, including internal transactions, self-destructed smart contracts, the account bal-
ance of each block, and so on. The database is used to quickly locate suspicious transactions, and
more importantly, provides fine-grained states that are needed by the replay engine.

The second component, i.e., replay engine, is able to efficiently and repeatedly replay arbitrary

and a large number of transactions. This is critical to solve the scalability issue in existing sys-
tems. The saved blockchain states are carefully designed to replay transactions without executing
unnecessary ones.

The third component, i.e., instrumentation framework, exposes interfaces for an analyst to
dynamically instrument smart contracts and introspect the execution of transactions. An analyst
can develop analysis scripts (using the JavaScript language) to analyze transactions and detect
malicious smart contracts. Our framework reduces the performance overhead by a fine-grained
design of instrumentation points and minimizes context switches between the Ethereum Virtual

Machine (EVM) and the analysis script. Compared with JSTracer [17], our framework is more
flexible and efficient (Table 6).

Evaluation. We evaluate our system from two perspectives. We first evaluate the efficiency of
our system. The performance evaluation shows that our system solves the scalability problem.
Specifically, our system consumes 1,844 GB for the states of 10,400,000 blocks. It is more efficient
(around 2,300× speedup) than existing ones when replaying (100) transactions. Then, we use three
different types of public information to detect attacks on Ethereum. Specifically, we leverage a
victim smart contract, a reported suspicious transaction, and the abnormal blockchain states as
inputs to understand the attack and further detect more attack instances. The comparison between
our system and other ones on the detection of the re-entrancy attack shows the accuracy of our
system.

In summary, this article makes the following main contributions:

• We present the flow of an investigation of attacks on Ethereum and summarize the limita-
tions of existing systems and their reasons.
• We propose multiple methods to solve the scalability issue and present the design of a scal-

able framework to detect real attacks on Ethereum (Section 3).
• We implement a prototype and illustrate methods to address three technical challenges

(Section 4).
• We evaluate the performance and effectiveness of our system with comprehensive experi-

ments (Section 5).

To engage the community, we will release the source code of EthScope and a dataset of detected
attacks on https://github.com/blocksecteam/ethscope. We also have a trial system with a Docker
image on https://hub.docker.com/r/swaywu/ethscope-trial.

2 BACKGROUND

2.1 Ethereum Accounts

Each account in Ethereum has an address and associated balance in Ether. There exist two
types of accounts, i.e., externally owned account (EOA) and smart contract account, respec-
tively. EOAs are controlled by private keys, while smart contract accounts are controlled by their

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 3, Article 54. Publication date: April 2022.

https://github.com/blocksecteam/ethscope
https://hub.docker.com/r/swaywu/ethscope-trial

Time-travel Investigation 54:5

Fig. 2. Normal and internal transactions. N: normal transactions; I: internal transactions.

contract code [3]. Note that, both accounts can have Ether and other tokens, thus are associated
with balances.4

The address of a new smart contract is calculated from the number of transactions being sent
(nonce) and the address of its creator, which is the account that creates the smart contract. Due to
this, the newly created contract address is predictable by its creator. We will illustrate an attack
that exploits this property in Section 5.2.

2.2 Transactions

A transaction is a type of message call that serves three purposes, including transferring Ether,
deploying a smart contract, and invoking functions of a smart contract. Transactions on Ethereum
are normally initiated from EOAs, hence the name normal transactions.

Besides, there exists another type of transactions that are initiated from a smart contract. They
are called internal transactions, which are used to invoke functions inside another smart contract,
or transfer Ether to other accounts. For instance, the opcode CALL can be used to invoke a function
of another smart contract, thus creating an internal transaction.

Note that, an internal transaction is always initiated from a normal transaction, since the smart
contract that creates an internal transaction should be executed in the first place (from an EOA us-
ing a normal transaction). Moreover, a normal transaction could create numerous internal transac-
tions, if the invoked smart contract does so (invoking functions of other smart contracts). Figure 2
shows an overview of normal and internal transactions.

2.3 Ethereum State

Ethereum’s nodes are devices participating in validating transactions. There are four types of states
in Ethereum, which are useful to analyze and replay transactions. They include block information,
normal transaction information, internal transaction information and accounts, as shown in the
following.

(1) Block information. The block information includes block number, block hash, and so on.
(2) Normal transaction information. The normal transaction information include addresses of

the sender and the receiver, transaction hash, transaction data, transaction values, and so
on.

(3) Internal transaction information. The internal transaction information is basically the same
as the normal transaction, plus the depth of the call stack of EVM.

(4) Account state. The account states include balance, nonce, code and storage of each account
(including EOAs and smart contract accounts).

4The fact that a smart contract account can have balances may contradict one’s intuition.

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 3, Article 54. Publication date: April 2022.

54:6 S. Wu et al.

Normally, a full Ethereum node only permanently stores the block information, normal trans-
action information and the account states of the latest blocks. When synchronizing from the
network, users can specify an option, e.g., -gcmode=archive in Geth, to retain a snapshot of
accounts’ states for each block. With the time-serial accounts’ state, users can use the API
debug.trace_transaction to replay arbitrary transactions in the exact manner as it was executed
on the network. However, this method is not scalable. We will discuss the way used in our system
to improve the performance of the replay process in Section 3.1.

2.4 Smart Contracts

Ethereum virtual machine. A smart contract is a program that runs on an underlying EVM to
transit the global states of the Ethereum network. A smart contract is usually programmed using a
high-level language, e.g., Solidity, and then is compiled into low-level machine instructions (called
opcodes), which will be fetched, decoded and executed by EVM.

EVM is a stack-based virtual machine. It has a virtual stack with 1,024 elements. All computa-
tions are performed on the stack. It means the operands and the result of intermediate operations
are stored on the stack. For instance, when executing the ADD opcode to add two operands, EVM
will pop two values from the stack, add them together and then push the result on the stack.

Besides the stack, there are four other types of data locations in EVM including memory, storage,
input field, and ret field. The memory, input data and ret field are used to store temporary data such
as function arguments, local variables, and return values. They are volatile, which means their
values will be lost when the execution of a smart contract is finished. In contrast, the storage is a
(per-account) persistent key-value store. For instance, a gaming smart contract could leverage the
storage to maintain the balance of each player.

Function invocation. As discussed in Section 2.2, internal transactions are used to invoke smart
contract functions. This is achieved through executing a message call [24] launched by six opcodes,
including CALL, CALLCODE, DELEGATECALL, STATICCALL, CREATE and CREATE2.

In a smart contract, there is a signature hash (four bytes) to denote the destination function that
will be invoked. The signature hash is defined as the first four bytes of the function signature’s
hash value (SHA3). Since this is a one-way function, it is hard to retrieve the function name from
the signature. However, there is an online service [22] that we can look up the function name given
a signature.

Smart contract creation and destruction. A smart contract could be created using two opcodes,
i.e., CREATE and CREATE2. Both opcodes behave similarly, except the way to calculate the address
of the newly created smart contract [16].

A smart contract can be self-destructed through the opcode SELFDESTRUCT. This opcode destroys
the smart contract itself and transfers all the Ether inside the contract to the address specified in
the parameters of this opcode (the target address). However, if the account with the target address
does not exist, then this opcode will create a new account with this address. This means that the
SELFDESTRUCT opcode implicitly creates a new account. Moreover, self-destructing a smart contract
reclaims the gas, since it frees the resources on the blockchain.

2.5 Ethereum Cryptocurrencies

Besides Ether, the native currency built on Ethereum, there also exist other tokens that can be
transferred and regarded as digital assets. The most popular token standard is ERC20 [6], which
defines a common list of interfaces tokens shall be in compliance with. By doing so, these to-
kens can be exchanged and traded in an easy way. There are a few tokens involved in this article.

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 3, Article 54. Publication date: April 2022.

Time-travel Investigation 54:7

Table 1. Comparison of States that Could Be Retrieved

by Existing Systems

Block NT IT Account Interface

Ethereum full node � � × × ×
Archive node [23] � � × �a ×

Etherscan [28] � � �b �c �d

BigQuery [36] � � � × �
Our system � � � � �

�a: The account states are coarse-grained that unnecessary

transactions will be replayed (Section 5.1.3).

�b: Etherscan does not provide the invocation data of internal

transactions.

�c: The account states provided by Etherscan does not support

the replay of transactions.

�d: Etherscan does not support customized query for a large

number of transactions, such as SQL.

Block: block information; NT: Normal transaction information; IT:

internal transaction information; Account: Account states

(Section 2.3). �: support; ×: not support; �: partial support.

Particularly, USDC [12] and USDT [13] are two famous stable-coins, which peg their value against
the U.S. dollar.

2.6 Decentralized Financial (DeFi)

DeFi often refers to the peer-to-peer finance enabled by decentralized technologies, such as
Ethereum blockchain. The DeFi ecosystem on Ethereum contains various types of projects. Au-

tomated Market Maker (AMM) and yield farming projects are two types of DeFi projects this
article targets. Specifically, Curve [27] is an AMM, which maintains a few liquidity pools. A liq-
uidity pool contains a few assets, and the relative percentage of each asset in that pool is used to
determine the price of a particular asset. The AMM provides users with cryptocurrencies exchange
services. Harvest [30] is a yield farming project, which finds the DeFi projects providing the high-
est Annual Percentage Yields (APY) and helps clients to invest. The yield farming project acts
as an investment manager. Harvest will mint fUSDC as certificates for clients who deposited USDC
as the investment funds. After harvesting the investment profits, the clients can withdraw their
deposited funds and profits by burning certificates.

3 SYSTEM DESIGN

In the following, we will first illustrate technical challenges and then present the overall design of
EthScope.

3.1 Technical Challenges

There are three technical challenges for building a scalable attack detection framework on
Ethereum.

Incomplete blockchain state. First, our system needs to provide a flexible interface to query the
Ethereum state. For instance, when being used to understand and detect an attack, our system shall
have the capability to quickly locate suspicious transactions from different perspectives, e.g., the
values in the transactions or the number of internal transactions that exceed a certain threshold.
Although there exist many methods that could be leveraged to explore Ethereum state, few of them
fulfill our requirements. The details are shown in Table 1. Among them, Ethereum in BigQuery [36]

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 3, Article 54. Publication date: April 2022.

54:8 S. Wu et al.

maintains the Ethereum states into seven tables and provides an SQL interface to query the state.
However, it lacks the account states that are critical for replaying transactions.

Scalability. Our system needs to replay and analyze a large number of transactions. There exist
three different methods that are adopted by existing systems [38, 43, 44]. All of them suffer from
the scalability issue.

The first one is to import the whole blockchain data with a customized EVM, which will execute
all transactions (normal and internal ones) from the genesis block (the first block on the chain). Dur-
ing this process, attack-specific rules are executed. Representative tools include ECFChecker [44],
ÆGIS [43] and SODA [38]. This method cannot selectively replay interested transactions. Thus,
many unrelated ones have been executed, consuming lots of time. Moreover, the coupling between
the detection and the importing process makes the detection of new attack instances hard, since
the time-consuming importing process cannot be executed repeatedly.

The second way is to use the debug.trace_transaction API [15] exposed by Geth [4] to replay

a transaction with the Ethereum archive node [52]. Though this method is more efficient than
the previous one, it still suffers from the scalability issue. That is because the granularity of the
historical state maintained by the Ethereum archive node is a block rather than a transaction. To
replay a transaction, all the (unnecessary) transactions before it inside the same block will be
executed. Our system solves this challenge by recovering a transaction-level historical state.

The third one is first replaying all transactions and recording all the runtime information [58].
The following detection is on the recorded information. However, this method consumes lots of
storage. According to the data reported in Reference [58], performing the attack detection in
0.2 millions blocks cost at least 2,949 GB. It is not scalable to analyze all the Ethereum blocks
(more than 10 millions blocks).

Extensibility to detect different attacks. Our system should be extensible to detect various
attacks with analyst-provided scripts. Geth has a mechanism called JSTracer [17] to introspect
the execution of a smart contract. It allows users to specify a JavaScript file that will be invoked
for every opcode executed. However, frequent switches between the EVM and the JavaScript file
make it impractical to analyze a large number of transactions. Our system addresses this challenge
with two optimizations. First, it has well-defined instrumentation points to minimize the number
of context switches. The analysis script will be invoked on-demand (instead of each opcode) when
defined instrumentation points are hit. Second, our framework is equipped with a dynamic taint
analysis engine inside the EVM. Analysts do not need to implement their own taint engine using
JavaScript files, which further reduces the number of context switches.

3.2 Overall Design

We address these challenges with three components, i.e., data aggregator, replay engine, and
instrumentation framework. The overall system architecture is shown in Figure 3.

Specifically, data aggregator imports the whole blockchain data and collects the Ethereum
state. The Ethereum states are collected by modifying the EVM. The collected states are stored in
a cluster database equipped with a flexible query interface. An analyst could perform customized
queries to locate transactions that are needed for further analysis. Note that the process to import
the blockchain data is a one-time effort. All the saved states could be queried without the need
to import the blockchain data again. Our system also takes a careful design of the stored states
to save the storage consuming. In fact, it consumes less storage than the Ethereum archive mode
(Section 5.1.1).

The second component, i.e., replay engine, is used to replay arbitrary transactions. An analyst
first locates candidate transactions and then feeds them to the engine. The replay engine obtains

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 3, Article 54. Publication date: April 2022.

Time-travel Investigation 54:9

Fig. 3. The overall architecture of EthScope.

the related states including related accounts’ states for each transaction from the data aggregator.
After that, it re-executes the transactions. Thanks to the transaction-level Ethereum states recov-
ered by the data aggregator, our system to replay unnecessary transactions (Section 5.1.3).

The third component, i.e., instrumentation framework, provides a mechanism to customize
the analysis. Specifically, an analyst can develop analysis scripts by defining callback functions
for instrumentation points. For instance, a specific callback function could be defined and will be
invoked if and only if the CALL opcode is executed. By doing so, our system avoids unnecessary
context switches between EVM and the analysis script. During this process, the EVM state, includ-
ing related stack and memory values, is provided to the script. Moreover, to facilitate the analysis,
a dynamic taint engine is provided with well-defined APIs.

4 IMPLEMENTATION DETAILS

We have implemented a prototype named EthScope. The data aggregator is implemented with
around 1,137 lines changes to the Geth client. Our system uses the distributed search and analyt-
ics engine ElasticSearch [7] to store the Ethereum states and provide an interface to query them.
The replay engine and instrumentation framework are implemented with 5,191 lines changes
to EVM. In the following, we will elaborate the implementation of each component.

4.1 Data Aggregator

States collection. The collection of block information and normal transaction information is
straightforward. Our system changes the EVM to collect the data before the execution of each
block (block information) and after the execution of each normal transaction (normal transaction
information).

Collecting internal transaction information and accounts’ states requires our system to hook
into the process of executing smart contracts. For instance, when the opcode SSTORE is executed,
the method setState in EVM is triggered. We change this method and add the code to capture the
state. Note that, the states are not immediately stored into the underlying database. Instead, we
create a buffer and save the states into the database when the buffer is full.

One challenge is how to ensure the completeness and correctness of the collected state. In our
system, we solve this challenge by comparing the collected state with ground truths. Specifically,
for block information and normal transaction information, we can easily compare them with the
data stored inside the Ethereum full node. For internal transaction information, we compare our
data with the data provided by online services, e.g., Etherscan [28]. However, there are no ground

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 3, Article 54. Publication date: April 2022.

54:10 S. Wu et al.

truths for the transaction-grained historical accounts’ state. We solve it in the replay engine
(States verification in Section 4.2).

Data organization and query interface. Our system takes the following methods to avoid the
scalability issue caused by storage-consuming, while providing enough information to replay a
transaction. Global variables of smart contracts consume lots of storage. That is because they are
updated frequently in different blocks.

Theoretically, we need to store all the global variables for each transaction in each block. How-
ever, when replaying a transaction, only the variables touched by that transaction are needed.
Thus, for each transaction, we only store the used global variables (storage values in Ethereum) in
the database.

Table 2 shows the detailed data schema. Specifically, the Code index5 stores the smart contracts’
code and the State index records the information about creating and destructing accounts. Re-
maining ones are stored in the Block index.

Thanks to ElasticSearch, an analyst could leverage the Query DSL based on JSON to define
queries [8] for customized analysis.

4.2 Replay Engine

To monitor the transaction behaviors at the runtime, we build an engine that is capable of replaying
arbitrary transactions on Ethereum. Our engine is based on the EVM of Geth, with modifications
to add support to retrieve the states from the data aggregator. Moreover, it provides interfaces
to communicate with instrumentation framework (Section 4.3).

Group transactions. The input to replay engine is a list of hash values for the transactions to
be analyzed. To speed up the process of obtaining related data from data aggregator, our system
divides transactions into different groups, with a threshold that each group contains no more than
10,000 transactions. This threshold is related to the size of the system memory. For each group,
replay engine first retrieves the historical states in a batch, and then replays transactions in the
group.

Retrieve Ethereum historical state. To replay a normal transaction, we need to retrieve the
Ethereum historical states from data aggregator. First, we get the block and transaction informa-
tion such as Difficulty and GasLimit from the Block index. Second, we retrieve the code of smart
contracts that are related to this normal transaction in the nested field GetCodeList inside the field
Transactions. That is because a normal transaction could involve multiple smart contracts. We re-
trieve the code for all the smart contracts. Third, we obtain all accounts’ state: nonce, balance and
storage values that the transaction will load. When the normal transaction is to create a new smart
contract, we need to retrieve the deploying code of the new smart contract from the index Code,
which is also the input of this normal transaction. Table 2 shows the details of the mentioned fields
and indices.

Execute transactions. After retrieving the historical state, replay engine executes the transac-
tions. During this process, callback functions defined in the analysis script will be invoked. To
speed up the process, our system further divides transactions in a group into different clusters ac-
cording to the number of CPU cores, and executes transactions inside different clusters in parallel.

Verify state. After replaying each normal transaction, replay engine will compare the used gas
and output of this transaction with the same fields in the normal transaction information in data
aggregator, which can ensure the correctness of the replay process. Note that, the normal trans-
action information in data aggregator has been verified (States collection in Section 4.1). Besides,

5The index in ElasticSearch is similar to the database in a relational database.

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 3, Article 54. Publication date: April 2022.

Time-travel Investigation 54:11

Table 2. ElasticSearch Indices

Index Name Field
Field of
Nested Field

Field of
Nested Field of
Nested Field

Field of
Nested Field of
Nested Field of
Nested Field

Block

DifficultyR

ExtraData
GasLimitR

GasUsed
HashR

MinerR

NumberR

TimestampR

TxnCount

Transaction

CallFunctionR

ConAddress
CumGasUsed
FromAddressR

GasLimitR

GasPriceR

GasUsedR

GetCodeListR

HashR

IntTxnCount
NonceR

Status
ToAddressR

TxnIndex

ValueR

InternalTxns

CallFunction
CallParameter
ConAddress
EvmDepth
FromAddress
GasLimit
Output
ToAddress
TxnIndex
Type

Value

Logs
Address
Topics

Data

ReadCommittedStateR

Address
Balance
CodeHash
CodeSize

Nonce

Storage
Key

Value

ChangedState

Address
Balance

Nonce

Storage
Key

Value

Code

Number

Timestamp

Transaction

Hash
TxnIndex

InputR

ContractR

Address
Hash

Code

State

Number

Timestamp

Transaction

Hash
TxnIndex
Create
Reset

SuicideR

R Fields that are necessary for replaying transactions.

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 3, Article 54. Publication date: April 2022.

54:12 S. Wu et al.

Table 3. Three Types of Instrumentation Points Supported

in Our System

Instrumentation Points Type Description

{op}
after{Op}

O
before and after the opcode {op}

is executed

transactionStart
transactionEnd

T
before and after an external

transaction is executed

contractStart
contractEnd

C
before and after a new contract

is executed

O: opcode-orientated; T: transaction-oriented; C: context-oriented.

to ensure the correctness of historical states collected by data aggregator, replay engine is used
to perform the verification when new states are stored into the database. If the replay process
is incorrect, then data aggregator will be interrupted until the problem is located and solved. In
fact, this interrupting will only occur after a hard fork that changes EVM, which requires updating
data aggregator.

4.3 Instrumentation Framework

The instrumentation framework aims to provide extensible APIs for an analyst to develop anal-
ysis scripts to detect new attack instances. Besides, instrumentation framework provides a dy-
namic taint engine to facilitate the analysis of control dependency and data dependency.

Overview. The framework is hooked into the replay engine and provides JavaScript interfaces.
Our system uses the Duktape JavaScript engine binding for Go [10] to execute JavaScript functions
inside the EVM developed in Go. Specifically, it defines instrumentation points, where the replay
process will be suspended and user-specific callback functions (in JavaScript) will be invoked. At
the same time, it provides the interfaces for analysis scripts to access the current execution context,
such as stack values and memory values. When the callback function finishes its execution, the
replay engine continues the smart contract’s execution from the instruction after the instrumen-
tation point.

Instrumentation points. Our system supports three types of instrumentation points, i.e., opcode-,
transaction-, and contract-oriented ones. Table 3 shows an overview of these instrumentation
points.

First, the opcode-oriented instrumentation links with two callback functions for each opcode,
{op} and after {op}. They are launched before and after executing the opcode {op}.

Second, the transaction-oriented callbacks, including transactionStart and transactionEnd,
are launched before and after the execution of a normal transaction. These two instrumentation
points are usually used for the initialization and processing results in the analysis script. Note that,
this type of instrumentation points only works for normal transactions, which are initialized from
EOAs. For internal transactions that are initialized from smart contracts, they are covered in the
contract-oriented instrumentation point.

Third, the contract-oriented callback functions, including contractStart and contractEnd, deal
with function calls crossing smart contracts (internal transactions). These two functions are in-
voked at the start and at the end of the execution of a smart contract function.

Figure 4 shows the sequence of invoking callback functions at different instrumentation
points. When an EOA issues a normal transaction, transactionStart will be invoked, and then
contractStart is executed. That is because the normal transaction initializes the execution of
smart contract A. Then the callback functions for each opcode are launched, until finishing the

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 3, Article 54. Publication date: April 2022.

Time-travel Investigation 54:13

Fig. 4. The sequence of invoking callback functions at different types of instrumentation points. The code of

the smart contract is for illustration only. O: opcode-oriented ; T: transaction-oriented ; C: contract-oriented.

Table 4. APIs Provided by Our Instrumentation Framework

APIs to retrieve execution context

op.getN() stack.length() memory.slice(start, end) contract.getSelfAddress() getBalance(addr) getBlockNumber() getPc()

op.toNumber() stack.peek(n) memory.getUint(offset) contract.getCodeAddress() getNonce(addr) getTxnIndex() getGas()

op.toString() contract.getValue() getCode(addr) getTxnHash() getDepth()

contract.getInput() getStorage(addr) getReturnData()

Other APIs

cfg.hijack(isJump) params.get(key)

APIs to assign, clear, and check taint tags

labelStack(n,tag) labelMemory(offset,size,tag) labelInput(o,s,t) labelReturnData(o,s,t) labelStorage(addr,slot,tag)

clearStack(n) clearMemory(offset,size) clearInput(o,s) clearReturnData(o,s) clearStorage(addr,slot)

peekStack(n) peekMemory(offset) peekInput(o) peekReturnData(o) peekStorage(addr,slot)

peekMemorySlice(offset,size) peekInputSlice(o,s) peekReturnDataSlice(o,s)

CALL opcode. This opcode invokes the function inside the smart contract B and creates the inter-
nal transaction. Since the smart contract B is executed, contractStart will be invoked again. After
that, callback functions for different opcodes will be invoked accordingly.

Note that, the execution context is switched from the EVM to the Duktape JavaScript engine,
only when a callback function is defined and the instrumentation point is hit at runtime. This min-
imizes the number of context switches between EVM and Duktape. Compared with the JSTracer
inside the Geth, our implementation is more efficient (Section 5.1.3).

APIs to retrieve the execution context. Our system provides multiple APIs to get the informa-
tion of the current execution context. Table 4 shows an overview of these APIs. We elaborate some
of them in the following.

• Normal transactions. Attributes of normal transactions are obtained by invoking
getBlockNumber, getTxnIndex, and getTxnHash. These attributes are used to distinguish dif-
ferent normal transactions.
• Internal transactions. Two APIs contract.getSelfAddress and contract.getCodeAddress

are used to retrieve the context contract and code contract. The code contract is the address
of the callee smart contract. However, the context contract can be the caller and the callee
smart contract, depending on the opcode used to invoke the contract. This complies with

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 3, Article 54. Publication date: April 2022.

54:14 S. Wu et al.

Fig. 5. An example of how to use the dynamic taint engine to assign and check taint tags.

the definition in Geth [5]. The API contract.getValue returns the amount of Ether that is
transferred into the code contract.

Every time an internal transaction starts, the EVM stack depth will be increased by one.
On the contrary, every time an internal transaction ends, it will be decreased by one. The
API getDepth is provided to get current EVM stack depth. By using this information, we can
detect the occurrence of a recursive function call.
• Parameters and return values. The API contract.getInput returns the input data (parame-

ters) when invoking a function, while getReturnData obtains return values.
• The program counter and remaining gas. APIs getPc and getGas return the current program

counter and remaining gas.
• Accounts. APIs getBalance, getCode, getStorage return the current states of an account at

any time.

Dynamic taint engine. Dynamic taint analysis has been widely used for security applications.
Our framework implements a dynamic taint engine that facilitates the development of analysis
scripts.

Our taint analysis engine supports the taint tag propagation crossing different smart contracts.
When the EVM triggers an internal transaction, it will pass input values from the caller’s memory
to the callee’s input field. After the invocation, the return value is put into the caller’s ret field.
We propagate the taint tags in opcodes CALLDATALOAD, CALLDATACOPY, and RETURNDATACOPY that
operate stack, memory, ret, and input field, respectively. Table 4 summarizes APIs to assign, clear,
and check taint tags. APIs label* allow an analyst to assign taint tags. APIs peek* and clear*
allow an analyst to check and clear tags.

Figure 5 shows an example of how to use these APIs. Specifically, two callback functions
sload and jumpi are invoked before executing opcodes SLOAD and JUMPI, respectively. Inside the
callback function sload, it assigns the taint tag to the value on the top of the stack (index 0) us-
ing log.taint.labelStack(0, tag). Then the taint engine will propagate the tag, even crossing
different contracts. When the callback function jumpi is executed, the log.taint.peekStack(1)
checks whether the second value on the stack (index 1) has the taint tag. If so, then it changes the
program counter. Thus, by checking the taint tag, an analyst can get the storage variables that can
influence the control flow.

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 3, Article 54. Publication date: April 2022.

Time-travel Investigation 54:15

5 EVALUATION

This section presents the evaluation results of EthScope by answering the following research ques-
tions. If not otherwise specified, then the evaluation is performed on the dataset that contains the
Ethereum statess from the genesis block (mined on July 30, 2015) to the 10,400,000th one (mined
on July 5, 2020).

• R1 What is the performance of EthScope and whether EthScope solves the scalability issue?
• R2 Whether EthScope can help understand the behaviors of suspicious transactions and

detect more attack instances?
• R3 Whether EthScope performs better than previous systems in terms of detected attacks?
• R4 Whether EthScope can be used to facilitate the analysis of DeFi attacks exploiting seman-

tic/logic vulnerabilities?

To answer R1, we report the comparison result of the storage consumption and the time used
to replay transactions. The result shows that EthScope consumes less storage and has a speedup
of around 2300x when replying transactions. This demonstrates the capability of our system to
perform the analysis on a large number of transactions.

To answer R2, we use three different types of public information as inputs, including a victim

smart contract, a reported suspicious transaction, and the abnormal blockchain state. For each type of
information, our system first understands attack behaviors, and then detect more attack instances.
We report the results in Sections 5.2, 5.3, and 5.4, respectively.

To answer R3, we compare the detection result of the re-entrancy attack with previous systems.
Our evaluation shows that our system is more accurate than previous ones. We report the results
in Section 5.5.

To answer R4, we elaborate the analysis of Harvest attack [31], which is a classic price manip-
ulation attack [57] on Ethereum. We report the results in Section 5.6.

5.1 Performance and Scalability

In this section, we demonstrate the scalability of our system via evaluating its performance from
the following perspectives. First, the storage use is more efficient than previous systems, while
at the same it can support the replay of arbitrary transactions. Second, the data aggregator can
help locate suspicious and candidate transactions in an efficient way. Third, the replay engine
can replay arbitrary transactions, with a 2,300× speedup. All experiments were performed on a
machine with four CPUs (Intel Xeon Silver 4110 CPU @ 2.10 GHz) and 128 GB memory. The
ElasticSearch database is built from a cluster of 12 machines, and each one has a CPU (Intel i7-
8700 @ 3.2 GHz) and 32 GB memory.

5.1.1 Storage Use. The data aggregator in our system stores the saved Ethereum state. We
compare the storage use of our system with other ones that also store the Ethereum state. Specif-
ically, ECFCHecker, Sereum, and SODA leverage the archive node of Geth to perform the analysis.
TxSpector replays historical transactions in Ethereum to record EVM bytecode-level traces into
a trace DB, and stores the logic relations into a logic relation DB [58].

As shown in Table 5, the Geth archive node [23] of the first 7.635 million blocks uses 2,320 GB.6

The trace DB of TxSpector and logic relation DB of TxSpector consume 1,577 GB, and 2,949 GB
for 7.2 and 0.2 million blocks, respectively. Obviously, TxSpector requires more space to support
its analysis.

6This data is obtained from the official Ethereum blog [25].

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 3, Article 54. Publication date: April 2022.

54:16 S. Wu et al.

Table 5. Comparison of the Storage Usage

Blocks Storage

Geth Archive Node 0−7,635,000 2,320 GB

Trace DB of TxSpector 0−7,200,000 1,577 GB

Logic Relation DB of TxSpector 7,000,000−7,200,000 2,949 GB

data aggregator 0–10,507,977 1,844 GB

Table 6. Comparison of JSTracer and Our System to

Replay 100 Normal Transactions

Tools
Retrieve

State

Execute

Script
Other

JSTracer
39 min 6 s 997 ms 0 min 16 s 984 ms 8 min 13 s 467 ms

Total 47m 37s 448ms

Our system
0 min 0 s 446 ms 0 min 0 s 217 ms 0 min 0 s 544 ms

Total 0 min 1 s 207 ms

Our system costs only 1,844 GB after collecting the Ethereum states for 10.5 million blocks. In
comparison with the Geth archive node, EthScope collects states information only necessary to
perform the security analysis and replay transactions. Hence, our system saves storage use by
avoiding storing unnecessary data, such as transaction signatures and merkle-tree [35] structures.
Besides, EthScope also outperforms TxSpector. TxSpector stores a lot of intermediate informa-
tion during transaction execution to support its analysis, which is separated from the runtime
states recovery. Such a strategy requires a lot of storage, because the recovered information must
be rich enough to cope with various future analyses. On the contrary, EthScope adopts a different
strategy to reduce the storage consumption: (1) it only stores accounts’ states necessary to replay
transactions; and (2) it analyzes transactions while replaying transactions simultaneously.

5.1.2 Query Transactions. The data aggregator provides an interface to locate transactions
by querying the saved Ethereum state, e.g., a normal transaction with more than 1,000 internal
transactions whose transferred Ether is large than a certain amount. Our evaluation shows that
most querying tasks can be finished in seconds, while complicated ones may last for a few minutes.
For instance, the collection of candidate transactions for the re-entrancy attack (Section 5.3) and
the bad randomness attack (Section 5.2) both take less than 5 min (retrieved 209,227 and 10,296,519
candidates from 754,614,255 normal transactions) in our experiments.

5.1.3 Replay Transactions. In the following, we will compare the performance of our system
with JSTracer (in the archive mode) supported by Geth [4]. To the best of our knowledge, this is
the only comparable counterpart that can repeatedly replay and instrument transactions.

First, we randomly pick 100 normal transactions that have triggered internal transactions. Then,
we develop a script that has an equivalent functionality with the example [14] (4byte_tracer.js) pro-
vided by Geth. Finally, we use the JSTracer and our system to replay 100 normal transactions. Note
that, a normal transaction could trigger multiple internal transactions, thereby the total number
of replayed transactions is 2,519.

Table 6 shows the comparison result of the transaction replay time between JSTracer and our
system. Specifically, JSTracer spends more than 47 min to replay the transactions, while our system
takes only around 1 s to replay them. The result suggests that our system outperforms JSTracer
with an around 2,300× speedup. We further explore the possible reasons.

• Granularity of the Ethereum historical state. To retrieve the Ethereum historical states
of the 100 normal transactions, JSTracer had to replay 3,289 additional normal transactions.

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 3, Article 54. Publication date: April 2022.

Time-travel Investigation 54:17

However, EthScope can directly query fine-grained accounts’ states information from the
data aggregator.

• Number of context switches. JSTracer needs to switch to the JavaScript environment for
every opcode. Alternatively, our instrumentation framework only performs context-switch
when instrumentation points are hit. That is why JSTracer performed 1,305,864 context
switches, while EthScope only performed 2,502 ones.

The result demonstrates that our system can replay a large number of transactions. In fact, for
the 10,296,519 normal transactions used to detect the new instances of the bad randomness attack,
our system took 12 h and 7 min to replay all of them, which is quite difficult (if not impossible) for
other systems to complete such a task.

Answers to Q1: In summary, EthScope solves the scalability issues to detect attacks from the
whole Ethereum blocks, and it outperforms the existing systems with lower storage consumption
and efficient replay engine. Specifically, EthScope uses an effective strategy to solves the scala-
bility issue caused by huge storage consumption: (1) it only stores accounts’ states necessary to
replay transactions; and (2) it analyzes transactions while replaying transactions simultaneously.
Furthermore, EthScope leverages the fine-grained accounts’ states, optimization of JSTracer, and
parallel strategy to lift the replaying speed by around 2,300, which solves the scalability issue
caused by low replaying efficiency.

5.2 Type-I Input: A Victim Contract

An analyst may receive incomplete information, e.g., a smart contract is being attacked. However,
there is no detailed information about the vulnerability of the victim contract, nor the information
on how the attack works. Our system can help an analyst understand the attack and detect more
attack instances. We use Fomo3D [26] as an example to illustrate how EthScope helps analysts
reveal attacks from a victim smart contract. The input to our system is the address7 of the victim
smart contract.

5.2.1 Understand the Attack. As shown in Figure 1, an analyst leverages our system to under-
stand the attack behaviors.

Locate suspicious transactions. To locate suspicious transactions that may involve in the attack,
our first step is to construct the money flow graph to locate suspicious accounts. That is because
Fomo3D is a gambling app. The money will flow into (successful) attackers (and other lucky play-
ers). Figure 6 shows the money flow graph constructed using transactions retrieved from the data
aggregator. Specifically, nodes in the graph represent accounts, and edges represent the direct and
indirect transactions with the Fomo3D game. The size of each node denotes the number of Ether
it receives.

We observe that several accounts have a much larger size than others. It means these accounts
have received much more Ether from the game than others. Initial analysis shows that three of
them belong to Fomo3D (numbers 0, 1, and 6). We then take further analysis for other accounts.

Understand suspicious transactions. We analyze a normal transaction8 that invokes the smart
contract (index 2 in the money flow graph)9 to receive Ether from Fomo3D. To this end, we con-
struct the dynamic call graph in Figure 7. The nodes in the graph represent accounts (both EOA
and smart contracts), and the edges denote Ether transfer or function invocation.

70xa62142888aba8370742be823c1782d17a0389da1.
80xee95751e94c8427f94ddf34e15bb322f681a0d264e9d2d21c3fc0d687dff22c2.
90x94c0d029a7b64bf443e89c5006089364c0d60d61.

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 3, Article 54. Publication date: April 2022.

54:18 S. Wu et al.

Fig. 6. The money flow graph of the Fomo3D smart contract. For better illustration, we use 180,244 transac-

tions to generate this graph. The total number of transactions with Fomo3D is much larger.

The call sequence of this graph shows that, the contract (0x94c0d0) transfers 0.1 Ether to the
contract (0x50ac2e) (index 4), which further creates a new smart contract (0x78414f) (index 6). This
new contract buys the key (index 9) with 0.1 Ether and then receives 0.126 Ether (index 17) from
the game. The received Ether is transferred back to the contract (0x94c0d0) with a SELFDESTRUCT
operation (index 18). During this process, it obtains a profit of 0.026 Ether.

There also exist many similar transactions related to the contract (0x94c0d0). These transactions
get a lot of rewards from the Fomo3D game. We suspect the contract (0x94c0d0) has a mechanism
to predict whether it can win the bonus before playing the game. Otherwise, it can not win every
time. After locating all the transactions and smart contracts created from this account by querying
the data aggregator, we find that the contract (0x94c0d0) indeed can predict whether it can win.
That is because the Fomo3D game uses the address of the player (controlled by the attacker) as
one of the sources to generate the random number that determines the winner.

Figure 8 shows (a simplified version of) the attack flow. There is a controller contract, which
creates a lot of proxy contracts (more than 1,000) in advance. Then during the attack, the con-
troller attack loops through each proxy contract. It calculates the address of a newly created smart
contract (but does not create it), because the address is predictable (Section 2.1). Then it uses this
address and the block information to predict whether it will get the bonus by executing the same
logic with the Fomo3D game. If so, then the proxy smart contract creates the attacking contract,
which further buys the key to play the game and win the bonus. After that, the attacking contract
self-destructs to transfer the earned bonus to the controller smart contract.

Because the attack exploits the vulnerable process of the smart contract to generate a random
number, we name this attack as the bad randomness attack.

5.2.2 Detect More Attack Instances. After understanding the above attack, we then use our sys-
tem to detect more bad randomness attacks. Specifically, we first use the data aggregator to filter
out transactions that are not related to the attack. Then, we use the replay engine to replay the
remaining transactions and the instrumentation framework to confirm new attack instances at
runtime.

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 3, Article 54. Publication date: April 2022.

Time-travel Investigation 54:19

Fig. 7. The dynamic call graph of a suspicious transaction. We draw three types of information for an inter-

nal transaction: 1. Serial number and the opcode to trigger an internal transaction; 2. Transferred Ether, null

means no Ether transferred; 3. Invoked function (we search the name from the 4byte function signature data-

base [22]), null means that the input data is empty. (Square: EOA, circle: smart contract; grey box: attacker,

white box: victim.)

Fig. 8. The flow of the bad randomness attack.

Locate candidate transactions. To avoid replaying unnecessary transactions (costing lots of
time), we first use the data aggregator to remove transactions that are not related to the bad
randomness attack.

We label normal transactions that fulfill the following requirements as candidate transactions.
First, it has triggered more than one internal transaction. Second, the triggered internal transaction
has transferred Ether to another smart contract. That is because to launch the attack, attackers have
to use a contract to transfer Ether to play the game, thus creating an internal transaction. This rule
is conservative. It may label some benign transactions as candidates. However, we want to include
as many candidate transactions as possible in this step and leverage the replay engine to confirm
whether they are real attacks. In total, our system locates 10,296,519 candidate transactions.

Confirm the bad randomness attack. After locating the candidate transactions, we then use
the replay engine to replay them and confirm attacks at runtime.

The key observation of this attack is that the malicious contract is using the same algorithm to
generate the random number as the victim contract. We develop the detection script as follows.

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 3, Article 54. Publication date: April 2022.

54:20 S. Wu et al.

(1) First, we find all the variables that are generated from block information, e.g., coinbase,
gaslimit, and so on. This is implemented using our taint analysis engine by setting the block
information as taint sources.

(2) Second, for each variable v found in the previous step, we check whether it influences the
control flow of the smart contract. That is because we only care about the variables that can
determine the winner. If so, then we log its execution context C.

(3) If there exist two same execution contexts in different internal transactions that are triggered
by a same normal transaction, then the normal transaction is a malicious one that launches
the attack. That is because two smart contracts are executing the same algorithm that uses
the same random number sources to generate a variable that can influence the control flow
to determine the winner.

Detection result. We replayed 10,296,519 candidate transactions with our analysis script. After
that, 40,449 normal transactions are labeled as malicious ones. During this process, 272 malicious
smart contracts are detected. We then group them based on their creators, i.e., EOAs that create
these contracts. In total, we get 79 groups. We manually checked the malicious smart contracts
created in each group and found that 74 of them are true positives. In total, they have initialized
40,358 normal transactions to attack 95 victim smart contracts, which includes various gambling
games. Table 7 shows the detailed information of victim contracts and the false positives.

5.3 Type-II Input: A Reported Suspicious Transaction

Besides the victim contract, an analyst may receive the information that a malicious transaction
is attacking a smart contract. Though there may exist partial information of the attack, the details
of the attack are unknown.

5.3.1 Understand the Attack. Attackers leveraged the re-entrancy vulnerability to launch the
attack toward the DAO smart contract and stole 3.6 million Ether [53]. In this following, we will
elaborate on the process to understand the attack by leveraging a reported transaction.10 Then, we
will leverage the gained knowledge to detect more re-entrancy attacks.

Understand suspicious transactions. The input is a reported transaction, e.g., from a public
forum. An analyst needs to understand how the attack works.

We construct a dynamic call graph in Figure 9. The serial numbers of transactions are in chrono-
logical order. The 0th transaction is a normal transaction, and others are internal transactions
triggered by the normal transaction. For better illustration, we only use the first 20 internal trans-
actions to draw the graph. The actual number of internal transactions is 185.

By analyzing this graph, we can find two distinct features of transactions that launch the attack.
First, there exists a loop in the graph. This is reasonable, since the call to the fallback function
that further invokes the vulnerable contracts will create a loop in the call graph. For instance,
internal transactions 2, 7, and 8 create a loop that starts from and ends at the malicious contract
(0xc0ee9db). Second, there should exist a special smart contract called reentry point, which is the
smart contract that will be invoked again before its previous invocation completes. For instance,
the DAO contract (0xbb9bc2) is a reentry point, since the EVM stack depths of internal transactions
(indexes 3–9) are all bigger than internal transaction 2. That means before an invocation to the
DAO contract 0xbb9bc2 (internal transaction 2) returns, another invocation (internal transaction
9) to the same contract happens.

100xfb6526b62f0a4627543cba59a24b9790d0f53ecd841b0adc6ba0026cadf77715.

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 3, Article 54. Publication date: April 2022.

Time-travel Investigation 54:21

Table 7. 102 contracts Susceptible to the Bad Randomness Attack

Contract Address Contract Name

Ponzi Game

1. 0xa62142888aba8370742be823c1782d17a0389da1 FoMo3D Long Official (F3D)

2. 0x205718799d502fe2c45d3afc91c3c8ccb5c0836f Vote Bhelp (Bhelp)

3. 0xcb47c89cb17c10b719fc5ed9665bae157cac2cb1 FoMoJP

4. 0x29488e24cfdaa52a0b837217926c0c0853db7962 SuperCard

5. 0x0fc53f7c2659a708f46d0c4336eb8c1e0f551307 Bingo3D (B3D)

6. 0xdd9fd6b6f8f7ea932997992bbe67eabb3e316f3c Last Winner (LW)

7. 0xcc8aabf5199a93c6cff2495761cbb70e056b41a5 MC2long

8. 0x8a883a20940870dc055f2070ac8ec847ed2d9918 RatScam

9. 0x0ad3227eb47597b566ec138b3afd78cfea752de5 FoMo3Dshort

10. 0x9872ffc47ff6ae0cbdec2f68bb88ad3169d69afc FoMo4D (F4D)

11. 0x86d179c28cceb120cd3f64930cf1820a88b77d60 FoMoGame

12. 0x460a5098248f4aa1a46eec6aac78b7819ea01c42 Suoha

13. 0x7ebd56cc7c1d14788ed09179f67cdcf2778c6535 JCLYLong

14. 0x52083b1a21a5abc422b1b0bce5c43ca86ef74cd1 FoMo3Dshort

15. 0x24da016c06941ec2c92be28e0a2b2e679f0d1dc7 FoMo3DLightning

16. 0x9edc05176ae3bba98c3112ac842269b225e55722 JCLYLong

17. 0x0b5da756938e334c97ce20715e32a4a8fea12ba9 F3Dultra

18. 0x6de7fd35c2f9b25b0efe85621306e9de41eab97f F3DGo

19. 0xb73f8f75cc233ec7a451d44859e06167e47c1942 LastUnicorn

20. 0xf9ba0955b0509ac6138908ccc50d5bd296e48d7d FoMo3D Fast Official (F3D)

21. 0x0f90ef4e2526e3d1791862574f9fb26a0f39ec86 F3DPLUS

22. 0x58232003b3d18021acfc9213d27d6f8b72f4f029 Rich3D

23. 0x820dfa17d30f938dc2c172b716630a06ec759d99 FullFOMO

24. 0xa9b9805d0fed371cec8fb8a8f2300f279c47ba53 F4Kings

25. 0x3664be8ec8a66e8dab9dfa48e5092f576edab746 FOMO Loop (LOOP)

26. 0xab4e6f106fff4e80f8d0689c61d235fc430f629e HX

27. 0x51a5271ec514c3065d9de2d8e95051989f7d53ab imfomo Long Official (imfomo)

28. 0x39ffccecc551f35f8dfcb52c8c01060919aed1ea FoMo3DUnlimited

29. 0x43312c23f2e8fe11390329c15079717c5b27b8b9 F3DLink

30. 0xda8d7ff0d043848a689125e2c7ab87b16a0cbe81 SnowStorm

31. 0xb2b30d39074c52a60283a26f238abff31fcb4217 SnowStorm

32. 0x103d98686ced96f1d2cf1a0d1eabdd63c9c027e4 F3DShop

33. 0xcc55c087d027c5dd3b0f3c28280c3a3fdd798c8b FoMo4D (F4D)

34. 0xf5ad74c2a4deeeffd1e5e27d1221a4ca33214277 NTE 3D Official (NTE3D)

35. 0x05aa2fdf9f58b426b49900834cce0565d88e52eb Bingo4Beast Long Official (B4B)

36. 0xfc812ef2661a99cd21ab452edcbab505583fe40b Famo

37. 0x202d16c018d31d60fe179a67901444565e0f0cc7 FoMo6D (F6D)

38. 0xb6cadfb7d4d900f8152954a58bff03901a57c2e2 FoMo3K

39. 0x7b20471396cedf00cd1f65eca27fdb3ca1643b6c SpicyPot

40. 0x7802b44acc5f37b4843d10f7c4eaec1c36bc7d2d OK3D (OK3D)

41. 0xb3640c4e8b8317cbe65aa4f20c7851996e6b406c NTech3DLong

42. 0x5cd17346bc2b8b3b04251dfea7763dbc70cceaf7 FoMo3D Asia (Official) (F3DA)

43. 0x20c3811a83fad33dc7a0c8ee2d1e773ddf3b7d44 Damo

44. 0xe69ba47f38ee8ab38696014c19b547a4aa955480 XMG Long Official (XMG)

45. 0x603f234b6c1cf8104a0791a1cc32ee73cd73cab7 FoMo6D (F6D)

46. 0x1ca95b07290db4cb91f9efc9060a8df2a8eaff00 F5D (F5D)

47. 0xf1ae594cefee0bf519f227f3262ee2a851b14b9a FoMo3D World (F3DW)

48. 0xe19c616ff1efc079792df6b5583d2cf3e6e77d10 The Winner (WINNER)

49. 0x8c74f1ed536e79de5cb225f035bc989ae84493f7 FomoSuper

50. 0x6db943251e4126f913e9733821031791e75df713 ReadyPlayerONE

51. 0x2a71ae354d82c16233416e96374ef324b12a5646 Must Be Hit 4D (MBT4D)

52. 0xf5fe6b716c0cd0e88059d8b3d8385c086012eb0e Gold medal winner Official (Gold)

53. 0x3bb5e74f7ff56e0b64d326f8ec07236aa4a07260 Greedy

Russian Roulette

54. 0x0ab2c9e20aa31fd3a3728a86f2526cca06a2b76d RussianRoulette

55. 0xef02c45c5913629dd12e7a9446455049775eec32 RuletkaIo

Airdrop Mechanism of BEB Token

56. 0x4669f488ce2df5b95ced6c058eca6034b9c25921 LUCK

57. 0x2e72dd0a0fb5d4f40d3c68f42a4abef2a99075fc LUCK

58. 0xf64094e8cd7100b8cda6352a5954c0f6217659f1 LUCK

(Continued)

5.3.2 Detect More Attack Instances. After understanding the re-entrancy attack, we detect more
attack instances.

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 3, Article 54. Publication date: April 2022.

54:22 S. Wu et al.

Table 7. Continued

Contract Address Contract Name

Slot Machine

59. 0x71c11a3b3a13a2e4a23c760722691952319ac7b9 Roulette

60. 0x5cfa2f4ff77bbd15d6415e33c16c2c85096cce4a MyDice

61. 0x510467f65a600926af2ed565419ad98cf1f706ed Slotthereum

62. 0x755ebf95883f9167d51a4ea95035e16421be865d EtherDie

63. 0x419a058dca91d152d36c4c6888aafd3890ce7429 EtherDie

64. 0x0b2d2b5e550f77ee125d3898ead74331ccf1da76 EtherDie

65. 0x8eb58b6239cc369ef8bf0bc5f41d8b5aac5f8b90 EtherDie

66. 0x13fbbea6f440c2fa56ff8f90ff984118a2df0500 ETHGIVER

67. 0x9d8542f45611e043a0379779eadc1071c6332763 Anonymous

68. 0x28cc60c7c651f3e81e4b85b7a66366df0809870f Ethereum_doubler

69. 0x233820087a752349ee20daab1c18e0b7c546d3f6 Anonymous

70. 0x87f31ab270ecf848663d64d3ab0998de2088a226 SlotMachine

71. 0x2e089902dec3406b548b6a014516695a1e5e3104 PIPOTFlip

72. 0xcb4fc459c926e5e10b698009f6f3c1ed658faef7 Coinflip

73. 0x9ac63e7a52247b05ac878f1ede7b1e1285a54843 BountyHunter

74. 0xf767fca8e65d03fe16d4e38810f5e5376c3372a8 LuckyDoubler

75. 0x46ee746d396bb2808e8fa41dc658036aee51d857 EthMash

76. 0xdbac44c23964a8913ac102b78bb85bf58b01e5c6 EJackpot

77. 0x30fe5c5197a761ac173bd29869d2c7a9e1770126 InstaLottos

78. 0x4429d240b0ef7617cb415edaec5e9050eee943bf Anonymous

79. 0x5caeebfab3cd8655e04692351237efb7462c9d8f VfSE_Lottery

80. 0x46b6434711a2dfab29a7069844968752db387ddc DiceRoll

81. 0x9d8542f45611e043a0379779eadc1071c6332763 Anonymous

82. 0xb0e6cebb35fbea49a46b568cced98173c58f36de Anonymous

83. 0x48198311ac8d81929c0e67e00dfc789b706178e9 Slot

84. 0xd6b3d9e44f767f0c178f60d24fb186ba49bc444a Slot

85. 0xf509f55692aeab739605a1815562c2f898fa6fd4 LuckyNumbers

Dragon King

86. 0xa03b5ea89ede664ccb3b4a49c5b25f6a4658e174 DragonKing

87. 0x0c7f4cddb7460ec4170466634f97cfbbeeda1961 Anonymous

88. 0x0aad44d047661bd190fb45640072c949d8129ef3 Anonymous

89. 0x3bc5bd64fff1b1a4054732abf23d8b100d991031 FootBall

90. 0x9ce0b408a4f15d222f6624895687efa1e1a4247b ETHERKUN

Lottery

91. 0x3d60f58f8bf0c4d45646116257f2717281a3d471 BREBuy

92. 0x103992432927f7ed1a5b3dc0e34186f80b16d93c Tiles

93. 0x6a21a83da9863d929a3d70c55bee2536fa48d544 GalaxyETHNormalJackpot

94. 0xb3ac6256c0dcaaf45b1e7c60993ed5edee10e1fa Revolution

95. 0x6dcdce5853cfbcbe4e3eb15c9ab2277983387cd9 Revolution

False Positives

96. 0x2248bfa3babbf53fdc058167584a642d13eebfed Anonymous

97. 0x7c91ca2620cfbaabdf440007c3b0ef5a4ac22370 Anonymous

98. 0x2fc79fa0f714d588835698ebe1965c511c03bb57 Anonymous

99. 0xc89137ceeb35115ed3a3cb0e3f5e865da963c51c Anonymous

100. 0x8c60d767daf8cbc8e9a4899fb2eb0bbf9bbf8c20 Anonymous

101. 0xb77feddb7e627a78140a2a32cac65a49ed1dba8e GeneScience

102. 0x7c91ca2620cfbaabdf440007c3b0ef5a4ac22370 Anonymous

*False positive.

Locate candidate transactions. According to the gained knowledge of the attack in the previous
step, we use the following two rules to locate candidate transactions. We label a normal transaction
as a candidate when it satisfies the following two conditions.

(1) First, internal transactions triggered by this normal transaction create a loop that contains
at least one reentry point. This detects the existence of reentrant function calls.

(2) Second, there is at least one internal transaction that involves the Ether or ERC20 token
transfer. This rule is to remove transactions that do not cause any change to the Ether or

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 3, Article 54. Publication date: April 2022.

Time-travel Investigation 54:23

Fig. 9. The dynamic call graph of a suspicious transaction that exploits the DAO smart contract. We use four

lines to describe an internal transaction: 1. Serial number and the opcode to trigger an internal transaction;

2. Transferred Ether, null means no Ether transferred; 3. Invoked function (we search the name from the 4byte

function signature database [22]), null means that the input data is empty; 4. EVM stack depth. (Square: EOA,

circle: smart contract; grey box: attacker, white box: victim.)

ERC20 tokens. They are not real attacks, since no financial benefits are achieved during this
process.

Thanks to the query interface provided by the data aggregator, we can easily locate candidate
transactions and remove unrelated ones. In total, we get 209,227 candidate transactions.

Confirm the re-entrancy attack. We further replay candidate transactions to confirm the re-
entrancy attack at runtime. During this process, an analysis script is invoked. Our system first
constructs a set of variables that could influence jump targets of the JUMPI opcode or values of
transferred Ether. Thanks to the dynamic taint engine of our system, we can check whether a
variable could influence the control flow by checking the taint tag of the second top value on the
stack (taint.peekStack(1)). For each variablev in this set, we define the callback function for the
SSTORE opcode to monitor whether the variable has been updated after the re-entrant point. If so,
then we will label the normal transaction as malicious.

Detection result. EthScope locates 209,227 candidate transactions. After replaying them, our sys-
tem detected 2,973 malicious normal transactions in the wild. Attackers are targeting 52 victim
contracts, which are shown in Table 8.

We manually analyze each detected attack. During the analysis, we only consider transactions
that have caused financial loss as true positives (real attacks). Our analysis shows that 46 transac-
tions are false positives, which are related to four victims (marked with * in Table 8). We show a
detailed analysis of one false positive in the following.

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 3, Article 54. Publication date: April 2022.

54:24 S. Wu et al.

Table 8. 52 Contracts Susceptible to the Re-entrancy Vulnerability

Reported by Our System

Contract Address Contract Name

1. 0xbb9bc244d798123fde783fcc1c72d3bb8c189413 TheDAO

2. 0xffcf45b540e6c9f094ae656d2e34ad11cdfdb187 Uniswap: imBTC

3. 0x5a6aefc503df1be6559d1e9850b5ce44f0aa7c4e Uniswap: pBTC

4. 0x009211344ee05ff3f69d9aadf0d3a0ab099c5363 Uniswap: eINV

5. 0x0eee3e3828a45f7601d5f54bf49bb01d1a9df5ea Lend.Me

6. 0xd654bdd32fc99471455e86c2e7f7d7b6437e9179 Anonymous

7. 0xbf78025535c98f4c605fbe9eaf672999abf19dc1 Anonymous

8. 0xf91546835f756da0c10cfa0cda95b15577b84aa7 LedgerChannel

9. 0x304a554a310c7e546dfe434669c62820b7d83490 TheDarkDAO

10. 0xdf4b83a451ef20b925ce39f4da2a021722688370 M_BANK

11. 0xcead721ef5b11f1a7b530171aab69b16c5e66b6e WALLET

12. 0x83a3a9b3068911b55a3989df0e642f487d08e424 CA_BANK

13. 0xcb6fe98097fe7d6e00415bb6623d5fc3effa4e83 THE_BANK

14. 0xa4e1cbf64c3b5db2a6e6f23cb5286b97d80b86e3 WWW_wallet

15. 0xfe1b613f17f984e27239b0b2dccfb1778888dfae InstaDice

16. 0xf5cff81d51e81596519ecf61830cb084037a2218 Anonymous

17. 0x55791ea128a7b7fc871272d9147435a3abb3d1eb Anonymous

18. 0x7c6220c9537946a0861d7e86f6423af526f41375 Anonymous

19. 0xac629878277bf6a2fc46857eac4d4dd17bfa330f Anonymous

20. 0x23a91059fdc9579a9fbd0edc5f2ea0bfdb70deb4 PrivateBank

21. 0xb4c05e6e4cdb07c15095300d96a5735046eef999 PrivateBank

22. 0xb93430ce38ac4a6bb47fb1fc085ea669353fd89e PrivateBank

23. 0x95d34980095380851902ccd9a1fb4c813c2cb639 Private_Bank

24. 0xd116d1349c1382b0b302086a4e4219ae4f8634ff Private_Bank

25. 0x4a8d3a662e0fd6a8bd39ed0f91e4c1b729c81a38 * HODLWallet

26. 0x4122073496955adb48e9a1dfaf6e456631b595a1 Anonymous

27. 0x2d5df43d54ae164a912db8de092cf707b446f693 CA_BANK

28. 0x463f235748bc7862deaa04d85b4b16ac8fafef39 PrivateBank

29. 0xa5d6accc5695327f65cbf38da29198df53efdcf0 Private_accumulation_fund

30. 0x59752433dbe28f5aa59b479958689d353b3dee08 Anonymous

31. 0xaae1f51cf3339f18b6d3f3bdc75a5facd744b0b8 DEP_BANK

32. 0x6e3c384480e71792948c29e9fc8d7b9c9d75ae8f p_bank

33. 0xe610af01f92f19679327715b426c35849c47c657 PIGGY_BANK

34. 0xbabfe0ae175b847543724c386700065137d30e3b PrivateBank

35. 0xdd71e35f680bb5adc77c6d1d9ef5793598e613dc Piggy_BanK

36. 0x62781f11b58e2caf8f28eaebc73fe711c634dcff * WRD Genesis (WRD)

37. 0xf01fe1a15673a5209c94121c45e2121fe2903416 Anonymous

38. 0x903643251af408a3c5269c836b9a2a4a1f04d1cf SysEscrow

39. 0xb7c5c5aa4d42967efe906e1b66cb8df9cebf04f7 keepMyEther

40. 0xb3e396f500df265cdfde30ec6e80dbf99bee9e96 pg_bank

41. 0x8ce53575e1ce89131b370cbed602ce8cfa4f7805 Anonymous

42. 0x26b8af052895080148dabbc1007b3045f023916e Anonymous

43. 0x0eb68f34efa0086e4136bca51fc4d0696580643e BetingHouse

44. 0x72f60eca0db6811274215694129661151f97982e DecentralizedExchanges

45. 0xd4cd7c881f5ceece4917d856ce73f510d7d0769e DecentralizedExchanges

46. 0x3ac969b43affc4e0684dc52dc3072b109d0e348d Bank

47. 0x3e64b1a66f3aa6f0765b093540481aa690c2b9b7 Anonymous

48. 0x4b23577c0672ab1e436097b7daceadb75e5721c6 Pg_Bank

49. 0x857a8d8aa8d83562f9118405335bd4a1fb523317 I_bank

50. 0xfdb27beadad89f8282c51f5e5a4e77c1f19d7220 CB_Bank

51. 0x5d84fc93a6a8161873a315c233fbd79a88280079 * Exchange

52. 0x772da237fc93ded712e5823b497db5991cc6951e * EverDragons (ED)

*False positives.

Our system reported one attack targeting HODLWallet. However, it is a false positive, since it
does not cause financial loss. Figure 10 shows the code snippet of the doWithdraw function. Specif-
ically, the variable withdrawalCount[from] in line 8 influences the control flow. Also, this variable
is updated after the reentry point in line 13. Thus, our system detects this as a re-entrancy attack.
However, the transaction does not cause any financial loss, since the balance balances[from] has

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 3, Article 54. Publication date: April 2022.

Time-travel Investigation 54:25

Fig. 10. The code snippet of HODLWallet.

been updated in line 10 (before the reentry point.) This is a false positive, though technically it is
still a re-entrancy attack that targets withdrawalCount[from] instead of balances[from].

Since the DAO attack, the security community has paid lots of attention to detect this vulner-
ability. However, the re-entrancy attack still happened recently. Specifically, our system detected
579 re-entrancy attacks after the 9,200,000th block (January 2, 2020), in which 46 attacks are target-
ing Lend.Me [33] and 529 attacks are targeting Uniswap [34]. Both of them are DeFi applications.
These two attacks caused significant financial loss.

5.4 Type-III Input: Abnormal Blockchain State

Besides the reported victim smart contracts and malicious transactions, an analyst can leverage the
data aggregator to observe the blockchain states and use multiple heuristics to locate suspicious
transactions. In the following, we elaborate the method of using the number of smart contract
creation and self-destructing to locate suspicious transactions, and the process of understanding
these transactions to detect multiple types of attacks.

5.4.1 Understand the Attack. Some attacks may lead to abnormal blockchain state, which can
be used by an analyst to perform the detection. In the following, we illustrate how our system
leverages the abnormal blockchain states to detect attacks.

Locate suspicious transactions. Attackers often create malicious smart contracts to automati-
cally launch attacks. After that, they often destroy these contracts to save cost or hide traces. For
instance, attackers of the bad randomness attack create a large number of smart contracts to launch
the attack and destruct them afterwards (Section 5.2).

Inspired by this observation, we draw a trend graph of smart contract creation and self-
destructing shown in Figure 11. From the figure, we can find that there exist several abnormal
points where the numbers of new smart contracts (and destroyed ones) are much larger than those
of the neighbors (marked with red circles in the figure).

These three abnormal points appear in blocks ranging from 2,000,000th to 3,000,000th,
6,500,000th to 7,500,000th, and 8,900,000th to 10,110,000th, respectively. We use data aggregator
to lookup transactions and accounts that create or destroy these smart contracts and label them
as suspicious.

Understand suspicious transactions. After analyzing suspicious transactions, we observe two
types of attacks and an automated arbitrage trading behavior. We illustrate them in the following.

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 3, Article 54. Publication date: April 2022.

54:26 S. Wu et al.

Fig. 11. The trend graph of smart contract creation (a) and self-destruction (b). The y-axes show the total

number of newly created smart contracts and destroyed ones for every ten days, respectively.

Fig. 12. The dynamic call graph of a suicide bomb DoS attack and an ERC20 airdrop hunting attack. Square:

EOA, circle: smart contract; grey box: attacker, red box: victim; solid line: transaction, dotted lines: ERC20

token transfer; the number before the opcode is the execution order for each opcode.

• Suicide bomb DoS attack. From blocks ranging from 2,000,000 to 3,000,000, there exists a
smart contract11 that contributes 34,148 and 33,980 times of smart contract creation and self-
destructing, respectively. The only functionality of the newly created smart contract is to
self-destruct and transfer its balance (1 Wei or 0 Wei) to a non-existent account.

We take a transaction12 as an example to illustrate its purpose. Figure 12(a) shows the
dynamic call graph. The EOA (0x61d5ec) first invokes (index 0) a smart contract (0x7c2021)
to create (index 1) a very simple contract (0x914374). Its functionality is to self-destruct itself,
and transfer its balance (0 Wei in this example) to a non-existent account.

For simplicity, we only draw the first ten transactions, and this normal transaction actually
triggered 320 times of self-destructing.

110x7c20218efc2e07c8fe2532ff860d4a5d8287cb31.
120xa02be5a3f2687b68e4643e73d26c4661dc66fb3550aa34fc9- 6abfa4bcb0bf8b6.

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 3, Article 54. Publication date: April 2022.

Time-travel Investigation 54:27

Fig. 13. The trades in an arbitrage (normal transaction). The number in circle represents the execution order.

It is worth noting that the destruction of a smart contract actually happens only when
the execution of the normal transaction (index 0) that initiates these internal transactions
finishes. Thus, the contract 0x914374 can execute the opcode SELFDESTRUCT multiple times
before it is actually self-destructed. Moreover, according to the definition of the opcode
SELFDESTRUCT, it will create a new EOA account (Section 2.1), without paying for the 25,000
gas charge,13 which is the gas needed to create a new account. These newly created accounts
will consume lots of storage resources on the blockchain. This is called the suicide bomb DoS
attack [39].

• Airdrop hunting attack. In blocks ranging from 6,500,000 to 7,500,000, there is a smart con-
tract account14 that contributes 501,919 creation and 526,079 times of smart contract creation
and self-destructing, respectively. We randomly pick a normal transaction,15 and draw the
dynamic call graph in Figure 12(b) to help us understand its purpose. As shown in the graph,
the smart contract (0x7c2021) continually creates new smart contracts to transfer 2,019.75
SEN tokens to the EOA (0xd48386) that initiates this transaction. The SEN token has an ag-
gressive marketing strategy, which will reward a few tokens for every new account that has
made a transaction with SEN. This strategy is adopted by many token smart contracts. The
purpose of creating so many new smart contracts is abusing this strategy to obtain rewards.
Destroying these new smart contracts is not necessary but can save cost. This kind of reward
is usually called airdrop reward. Therefore, this attack is called an airdrop hunting attack.

• Automated arbitrage trading. In blocks ranging from 8,900,000 to 10,110,000, there is a
smart contract account16 that contributes 510,390 creation and 537,992 times of smart con-
tract creation and self-destructing, respectively. After analyzing the suspicious transactions,
we find this is a trade bot, which buys and sells digital assets among decentralized exchanges
using arbitrage. Though this cannot be considered as an attack, this still shows the capability
of our system to understand the behaviors of smart contracts.

Figure 13 shows the digital assets transfer in an arbitrage (normal) transaction,17 which
includes two trades. The trade bot (0x801828) first exchanges 6.02048 PAXs [32] with 0.03474
Ether from Uniswap [34], and then it exchanges 0.03821 Ether with 6 PAXs from Kyber [11].
As a result, the trade bot gets 0.003 Ether and 0.02 PAXs due to the exchange rate differences
between the two exchanges Kyber and Uniswap.

We further analyze the purpose of the self-destructing of smart contracts. The trade bot

first created lots of smart contracts in advance with lower gas prices. When performing
arbitrage, attackers will set up a higher gas price so that their trade transactions have a
higher priority when being packed. That is because miners tend to pack transactions with

13This vulnerability has been fixed in the EIP150 [9] hard fork of Ethereum.
140xe9428d4a341ac20e9f2e6b95b12c9ad52733fcd9.
150x5a5fb2f3d097c44d0454612404097eb51f0025bf86c5f25e1902639e139b944b.
160x8018280076d7fa2caa1147e441352e8a89e1ddbe.
170x3cf41ad4f703fe61368139b8482e75de53a335b9d76039ca071530bb5292b0c7.

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 3, Article 54. Publication date: April 2022.

54:28 S. Wu et al.

Table 9. Comparison between our System and Others in Detecting the Re-entrancy Attacks

Block Range # of Normal Transactions Tools # of Flagged Contracts # of True Positives

0–3,918,380 32,048,852
ECFChecker [44] 9 5

EthScope 6 6

Flagged Normal Transactions

0–9,000,000 590,040,664
Sereum [52] 245,519 —
EthScope 2,392 2,347

Flagged Contracts

0–8,180,000 500,930,221
SODA [38] 31 27
EthScope 29 27

Flagged Contracts

0–4,500,000 78,141,322
ÆGIS [43] 7 7
EthScope 7 7

Flagged Contracts

7,000,000–7,200,000 9,661,593
TxSpector [58] 30 0

EthScope 1 1

higher gas prices. After that, they self-destruct the smart contracts to receive the returned
gas at a higher gas price, since the current gas price used in the transaction is high.

Answers to Q2: With three different types of inputs, our system can help understand the suspi-
cious transactions and further detect new attacks by locating and replaying candidate transactions.
This demonstrates the effectiveness of our system to facilitate the attack investigation and detect
new attack instances.

5.5 Comparison with Existing Systems

In this section, we compare EthScope with existing systems. We use the re-entrancy attack to
perform the comparison, because it is the only attack type that is investigated by all the previous
studies. Table 9 shows the overall result. For each system, we use the same dataset and compare
the detected attacks. The result shows that our system has lower false positives and false negatives.

ECFCHecker. ECFCHecker [44] reports nine malicious smart contracts before 3,918,380th block
(Jun 23, 2017). Among them, five are true positives and four are false positives. Our system detects
six malicious smart contracts. All of them are true positives. Specifically, five false positives are the
same smart contracts detected by ECFCHecker. One true positive18 (a malicious smart contract in
the 1,743,596th block) is missed by ECFCHecker. Besides, our system does not flag the four false
positives reported by ECFCHecker.

Sereum. Sereum [52] has released the evaluation result for the first 9 million blocks on GitHub. It
flags 245,519 normal transactions as re-entrancy attacks. Among the first 9 million blocks, 2,392 are
detected by our system. Besides, among 2,392 normal transactions, 12 are not flagged by Sereum.

First, we manually confirm that these 12 normal transactions are true positives. That means
they have been missed by Sereum. Second, for the 243,139 normal transactions that are flagged by
Sereum, we randomly pick up 10 transactions. The manual analysis shows that they are all false
positives.

SODA. For the first 8.18 million blocks, SODA [38] reports 31 vulnerable contracts, with 5 false
positives and 26 true positives. After double-checking the 31 contracts, we find two of them are
false positives19 and one is true positive20 (reported as the false positive by SODA). Therefore, the
result is 27 true positives and four false positives. EthScope detects the same 27 true positives.

180xf01fe1a15673a5209c94121c45e2121fe2903416.
190x72f60eca0db6811274215694129661151f97982e, 0xd4cd7c881f5ceece4917d856ce73f510d7d0769e.
200x59abb8006b30d7357869760d21b4965475198d9d.

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 3, Article 54. Publication date: April 2022.

Time-travel Investigation 54:29

ÆGIS. ÆGIS [43] reports that seven smart contracts are victims of the re-entrancy attack during
the first 4.5 million blocks. EthScope detects the same victimized smart contracts. However, ÆGIS
marks fewer attack transactions (1,118 vs. 2,301) than EthScope. That is because ÆGIS limits their
analysis to the first 10,000 normal transactions of each contract to reduce the execution time. Our
system does not have this limitation, thanks to the efficient replay engine.

TxSpector. Due to the storage consumption, TxSpector detects the re-entrancy attack from
7,000,000th block to 7,200,000th block. It flags 3,357 normal transactions as malicious and 30 vul-
nerable smart contracts. Among them, they manually labeled 17 ones as true positives. EthScope
flags one malicious normal transaction21 and one victim contract.22 It is the re-entrancy attack to
SpankChain [1].

The authors of the TxSpector kindly provide their dataset for us. We manually analyze the 17
smart contracts that are reported as true positives by TxSpector. However, they are not vulnerable
and cannot be victims of the re-entrancy attack according to our definition (causing a financial
loss). Moreover, one true positive (the SpankChain re-entrancy attack) reported by our system is
not detected by TxSpector.

Answers to Q3: Comparing with previous systems, EthScope has lower false positives and false
negatives when detecting the re-entrancy attack.

5.6 Analysis of Attacks Exploiting Logic Vulnerabilities

In this section, we demonstrate the capability of EthScope in analyzing attacks exploiting new
logic vulnerabilities, which have been observed in the wild in recent months.

Similar to the investigation discussed earlier, we also construct a dynamic call graph (like
Figures 7 and 9) for the attack transaction. However, the complicated interactions between DeFi
projects may make the dynamic call graph too huge to analyze, i.e., the intentions of the malicious
contracts are submerged by numerous invocations between DeFi projects. To address this issue,
we first feed the ABIs of related smart contracts to EthScope, and then extract the high-level se-
mantic from the raw invocations. By doing so, we can identify and focus on the core logic of the
malicious contract.

Here, we use a reported transaction23 in Harvest hack [31] as an example to elaborate the process.
Figure 14 depicts the core logic of this transaction extracted by EthScope. Specifically, EthScope
facilitates identifying the behavior of the malicious contract by merging numerous internal transac-
tions that were triggered by internal transactions 156, 201, 372, and 467. Besides, EthScope decodes
the auxiliary data (including function names, event names, function parameters and event param-
eters) to help better understand the details of DeFi services invoked by the malicious contract.

As shown in Figure 14, the malicious contract continuously invokes three DeFi services in the
following four steps:

(1) Exchanging 17.9M USDT for 17.9M USDC in Curve [27].24

(2) Depositing 60.2M USDC to Harvest [30] and receiving 69.7M minted fUSDC as certificates.
(3) Exchanging 17.9M USDC for 17.9M USDT in Curve.
(4) Withdrawing 60.6M USDC from Harvest after burning 69.7M fUSDC.

The malicious contract profits 0.4M USDC from Harvest after the above four steps. Note that in step
2, it gets 69.7M fUSDC minted by Harvest as certificates of the deposited 60.2m USDC. However,

210xb5c10dbb51b00199d4d817488490f129e80832a4fd6dbf209277c11d42873cca.
220xf91546835f756da0c10cfa0cda95b15577b84aa7.
230xb460b70f11a93364fecf1f3c3ec49f053aecd2d6d9912c012170aa7a0de2d526, and the related smart contracts are Harvest [30] and Curve [27],
respectively.
24This Curve pool set ID of DAI, USDC, USDT, and TUSD to 0, 1, 2, and 3.

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 3, Article 54. Publication date: April 2022.

54:30 S. Wu et al.

Fig. 14. The core part of decoded information in an attack transaction of Harvest hack [31]. The solid box

represents a function invocation decoded by an internal transaction; the dotted box represents a contract

event decoded by a log. The number before invocation is the invocation sequence number.

in step 4, it withdraws 60.6M USDC (0.4M more than the amount of deposit) from Harvest by
burning 69.7M fUSDC. Obviously, such a derivation becomes a clue to focus on the interaction
between Harvest and Curve (from step 2 to step 4). Based on this observation, it is not difficult for
an experienced analyst to identify the root cause, i.e., Harvest’s price mechanism depends on the
real-time prices provided by Curve.

Answers to Q4: EthScope is capable of facilitating analyzing new attacks targeting semantic/logic
vulnerabilities in DeFi projects. Specifically, it extracts high-level semantics from (high volumes
of) raw transactions to quickly locate vulnerabilities.

6 DISCUSSION

The purpose of our system is to detect real attacks. Compared with other static analysis tools [37,
42, 46–49, 51, 54–56], our system may miss some vulnerable smart contracts that are not exploited

in the wild. Nevertheless, our system does not intend to replace existing static tools. Instead, these
tools are complementary to our system. For instance, the vulnerable smart contracts reported by
them [37, 42, 46–49, 51, 54–56] could be one type of inputs (as shown in Section 5.2) to locate real

attacks.
Though the main usage of our system is to perform investigation on attacks that have happened,

it can be extended to conduct real-time detection of attacks. We can continuously monitor the
blockchain states and use some heuristics to locate suspicious transactions. For instance, we can
continuously monitor the transactions that are involved in big-amount Ether transfer. We can mark
them as suspicious and understand the purpose of such transactions using our system. Another
example is monitoring the transactions with smart contracts that may potentially be attacked, e.g.,
DeFi applications. That is because such applications are high-value targets for attackers to make
profits. We leave the real-time detection of new attacks as one of the future work.

Though we have demonstrated the effectiveness of our system, an analyst still needs some public
information as inputs, e.g., victim contracts. One potential direction is to use new techniques,
e.g., machine learning algorithms to automatically locate suspicious transactions. Currently, our

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 3, Article 54. Publication date: April 2022.

Time-travel Investigation 54:31

system provides a dynamic taint engine to facilitate the analysis. In the future, we can integrate
more components, e.g., dynamic symbolic execution, into the system to ease the development of
analysis scripts.

7 RELATED WORK

Data analysis frameworks of Ethereum. Chen et al. [41] proposed a graph-analysis-based ap-
proach to analyze Ethereum from different aspects, including money flow, account creation, and
contract invocation. DataEther [40] first instruments an Ethereum full node to collect data and then
uses ElasticSearch [7] to store the collected data. Similar to EthScope, these systems can be used
to locate suspicious transactions. However, they are not capable of introspecting the execution of
smart contracts to understand and detect more attacks.

Static analysis tools of Ethereum smart contracts. A number of static analysis tools have been
proposed to detect vulnerabilities of Ethereum smart contracts, including Oyente [48], Mythril [18],
Osiris [55], MAIAN [49], ContractFuzzer [46], ILF Fuzzer [45], Securify [56], and ZEUS [47]. These
systems only provide a static view of smart contracts, i.e., whether they are vulnerable or not. They
cannot provide a dynamic view of contract interactions (or transactions), which is useful to analyze
and understand attacks. Our system does not intend to replace existing static tools. Instead, they
are complementary to our system. For instance, the vulnerable smart contracts reported could be
one type of inputs (as shown in Section 5.2) to locate real attacks.

Dynamic analysis tools of Ethereum smart contracts. Dynamic analysis has been regarded
as an effective complement to static analysis for security purposes. ECFChecker [44], Sereum [52],
SODA [38], and ÆGIS [43] are representative tools to analyze Ethereum smart contracts. On one
side, both Sereum [52] and ECFChecker [44] focus on the detection of the re-entrancy attack. On
the other side, SODA [38] and ÆGIS [43] provide extensible interfaces to detect multiple types
of attacks. Unfortunately, these tools suffer from the scalability issue. They are not suitable to
perform the large-scale detection.

Pérez et al. [50] presented the first work that adopts the datalog-based approach to analyze
vulnerabilities of smart contracts. However, it only analyzes transactions related to the smart
contracts flagged by other tools. TxSpector [58] also relies on datalog and supports customized
rules to analyze different types of vulnerabilities and attacks. However, TxSpector is not scalable
to perform the large-scale detection, due to the heavy storage consumption. Zhou et al. [29]
investigated attacks in the wild. They leveraged internal transactions information (named trace

in the paper) and transaction logs to measure six types of vulnerabilities, including call injection,
re-entrancy, integer overflow, airdrop hunting, honeypot, and call-after-destruct. Our system has
a different purpose. It focuses on building a scalable framework to understand and detect different
types of attacks.

8 CONCLUSION

In this article, we present the design of a scalable attack detection framework on Ethereum. It
overcomes the scalability issue of existing systems that it can perform timely attack investigation
and detect more attacks. We implement a prototype named EthScope and solve three technical
challenges. The performance evaluation shows that our system can solve the scalability issue. The
result with three different types of information as inputs shows that it can help an analyst under-
stand attack behaviors and further detect more attacks.

ACKNOWLEDGMENTS

We thank the anonymous reviewers for their comments that greatly helped improve the presenta-
tion of this article.

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 3, Article 54. Publication date: April 2022.

54:32 S. Wu et al.

REFERENCES

[1] 2018. We Got Spanked: What We Know So Far, https://medium.com/spankchain/we-got-spanked-what-we-know-so-

far-d5ed3a0f38fe.

[2] 2014. Ethereum Official Website. Retrieved from https://www.ethereum.org/.

[3] 2014. Ethereum White Paper. Retrieved from https://github.com/ethereum/wiki/wiki/White-Paper.

[4] 2014. Go Ethereum. Retrieved from https://geth.ethereum.org.

[5] 2015. Code address and self address in contract type of Go-Ethereum. Retrieved from https://github.com/ethereum/go-

ethereum/blob/master/core/vm/contract.go.

[6] 2015. ERC20 Token Standard. Retrieved from https://github.com/ethereum/EIPs/blob/master/EIPS/eip-20.md.

[7] 2015. Open Source Search & Analytics—ElasticSearch. Retrieved from https://www.elastic.co.

[8] 2015. Query DSL. Retrieved from https://www.elastic.co/guide/en/elasticsearch/reference/current/query-dsl.html.

[9] 2016. eip-150. Retrieved from https://github.com/ethereum/EIPs/blob/master/EIPS/eip-150.md.

[10] 2017. Duktape JavaScript engine bindings for Go. Retrieved from https://github.com/olebedev/go-duktape. (2017).

[11] 2017. Kyber Network. Retrieved from https://blog.kyber.network/.

[12] 2017. USDC. Retrieved from https://www.circle.com/en/usdc.

[13] 2017. USDT. Retrieved from https://tether.to.

[14] 2018. 4byte tracer. Retrieved from https://github.com/ethereum/go-ethereum/blob/master/eth/tracers/internal/tracers/

4byte_tracer.js.

[15] 2018. debug_traceTransaction. Retrieved from https://github.com/ethereum/go-ethereum/wiki/Management-APIs#

debug_tracetransaction.

[16] 2018. eip-1014. Retrieved from https://github.com/ethereum/EIPs/blob/master/EIPS/eip-1014.md.

[17] 2018. JS tracer. Retrieved from https://github.com/ethereum/go-ethereum/wiki/Management-APIs#debug_

tracetransaction.

[18] 2018. Mythril. Retrieved from https://github.com/ConsenSys/mythril.

[19] 2018. New batchOverflow Bug in Multiple ERC20 Smart Contracts (CVE-2018–10299). Retrieved from https://blog.

peckshield.com/2018/04/22/batchOverflow/.

[20] 2018. New ceoAnyone Bug Identified in Multiple Crypto Game Smart Contracts (CVE-2018–11329). Retrieved

from https://medium.com/@peckshield/new-ceoanyone-bug-identified-in-multiple-crypto-/game-smart-contracts-

cve-2018-11329-898cdceac7e0.

[21] 2018. New proxyOverflow Bug in Multiple ERC20 Smart Contracts (CVE-2018–10376). Retrieved from https://blog.

peckshield.com/2018/04/25/proxyOverflow/.

[22] 2018. Welcome to the Ethereum Function Signature Database. Retrieved from https://www.4byte.directory/.

[23] 2019. Ethereum Archive Data. Retrieved from https://infura.io/docs/ethereum/add-ons/archiveData.

[24] 2019. Ethereum Yellow Paper. Retrieved from https://ethereum.github.io/yellowpaper/paper.pdf.

[25] 2019. Geth v1.9.0 Foundation Blog. Retrieved from https://blog.ethereum.org/2019/07/10/geth-v1-9-0/.

[26] 2019. How to PWN FoMo3D, a beginners guide. Retrieved from https://www.reddit.com/r/ethereum/comments/

916xni/how_to_pwn_fomo3d_a_beginners_guide/.

[27] 2020. Curve. Retrieved from https://curve.fi.

[28] 2020. Etherscan. Retrieved from https://etherscan.io.

[29] 2020. An ever-evolving game: Evaluation of real-world attacks and defenses in ethereum ecosystem. In Proceedings of

the 29th USENIX Security Symposium (USENIX Security’20). USENIX Association. Retrieved from https://www.usenix.

org/conference/usenixsecurity20/presentation/zhou-shunfan.

[30] 2020. Harvest. Retrieved from https://harvest.finance.

[31] 2020. Harvest hack. Retrieved from https://www.coindesk.com/harvest-finance-24m-attack-triggers-570m-bank-

run-in-latest-defi-exploit.

[32] 2020. Paxos Standard. Retrieved from https://www.paxos.com/pax/.

[33] 2020. Understanding the Lend.Me Attack. Retrieved from https://hackernoon.com/how-did-lendfme-lose-dollar25-

million-to-a-reentrancy-/attack-an-analysis-091iy32s7.

[34] 2020. Understanding the Uniswap Attack. Retrieved from https://blog.openzeppelin.com/exploiting-uniswap-from-

reentrancy-to-actual-profit/.

[35] 2021. Merkle tree. Retrieved from https://en.wikipedia.org/wiki/Merkle_tree.

[36] Evgeny Medvedev and Allen Day. 2018. Ethereum in BigQuery: a Public Dataset for smart contract analyt-

ics. Retrieved from https://cloud.google.com/blog/products/data-analytics/ethereum-bigquery-public-dataset-smart-

contract-analytics.

[37] Lexi Brent, Anton Jurisevic, Michael Kong, Eric Liu, François Gauthier, Vincent Gramoli, Ralph Holz, and Bernhard

Scholz. 2018. Vandal: A scalable security analysis framework for smart contracts. Retrieved from http://arxiv.org/abs/

1809.03981.

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 3, Article 54. Publication date: April 2022.

https://medium.com/spankchain/we-got-spanked-what-we-know-so-far-d5ed3a0f38fe
https://www.ethereum.org/
https://github.com/ethereum/wiki/wiki/White-Paper
https://geth.ethereum.org
https://github.com/ethereum/go-ethereum/blob/master/core/vm/contract.go
https://github.com/ethereum/EIPs/blob/master/EIPS/eip-20.md
https://www.elastic.co
https://www.elastic.co/guide/en/elasticsearch/reference/current/query-dsl.html
https://github.com/ethereum/EIPs/blob/master/EIPS/eip-150.md
https://github.com/olebedev/go-duktape
https://blog.kyber.network/
https://www.circle.com/en/usdc
https://tether.to
https://github.com/ethereum/go-ethereum/blob/master/eth/tracers/internal/tracers/4byte_tracer.js
https://github.com/ethereum/go-ethereum/wiki/Management-APIs#debug_tracetransaction
https://github.com/ethereum/EIPs/blob/master/EIPS/eip-1014.md
https://github.com/ethereum/go-ethereum/wiki/Management-APIs#debug_tracetransaction
https://github.com/ConsenSys/mythril
https://blog.peckshield.com/2018/04/22/batchOverflow/
https://medium.com/@peckshield/new-ceoanyone-bug-identified-in-multiple-crypto-/game-smart-contracts-cve-2018-11329-898cdceac7e0
https://blog.peckshield.com/2018/04/25/proxyOverflow/
https://www.4byte.directory/
https://infura.io/docs/ethereum/add-ons/archiveData
https://ethereum.github.io/yellowpaper/paper.pdf
https://blog.ethereum.org/2019/07/10/geth-v1-9-0/
https://www.reddit.com/r/ethereum/comments/916xni/how_to_pwn_fomo3d_a_beginners_guide/
https://curve.fi
https://etherscan.io
https://www.usenix.org/conference/usenixsecurity20/presentation/zhou-shunfan
https://harvest.finance
https://www.coindesk.com/harvest-finance-24m-attack-triggers-570m-bank-run-in-latest-defi-exploit
https://www.paxos.com/pax/
https://hackernoon.com/how-did-lendfme-lose-dollar25-million-to-a-reentrancy-/attack-an-analysis-091iy32s7
https://blog.openzeppelin.com/exploiting-uniswap-from-reentrancy-to-actual-profit/
https://en.wikipedia.org/wiki/Merkle_tree
https://cloud.google.com/blog/products/data-analytics/ethereum-bigquery-public-dataset-smart-contract-analytics
http://arxiv.org/abs/1809.03981

Time-travel Investigation 54:33

[38] Ting Chen, Rong Cao, Ting Li, Xiapu Luo, Guofei Gu, Yufei Zhang, Zhou Liao, Hang Zhu, Gang Chen, Zheyuan

He, Yuxing Tang, Xiaodong Lin, and Xiaosong Zhang. 2020. SODA: A generic online detection framework for smart

contracts. In Proceedings of the 27th Network and Distributed System Security Symposium.

[39] Ting Chen, Xiaoqi Li, Ying Wang, Jiachi Chen, Zihao Li, Xiapu Luo, Man Ho Au, and Xiaosong Zhang. 2017. An adap-

tive gas cost mechanism for ethereum to defend against under-priced dos attacks. In Proceedings of the International

Conference on Information Security Practice and Experience. Springer, 3–24.

[40] Ting Chen, Zihao Li, Yufei Zhang, Xiapu Luo, Ang Chen, Kun Yang, Bin Hu, Tong Zhu, Shifang Deng, Teng Hu, Jiachi

Chen, and Xiaosong Zhang. 2019. DataEther: Data exploration framework for ethereum. In Proceedings of the IEEE

International Conference on Distributed Computing Systems.

[41] Ting Chen, Yuxiao Zhu, Zihao Li, Jiachi Chen, Xiaoqi Li, Xiapu Luo, Xiaodong Lin, and Xiaosong Zhang. 2018.

Understanding ethereum via graph analysis. In Proceedings of the IEEE International Conference on Computer

Communications.

[42] Weili Chen, Zibin Zheng, Jiahui Cui, Edith Ngai, Peilin Zheng, and Yuren Zhou. 2018. Detecting Ponzi schemes on

ethereum: Towards healthier blockchain technology. In Proceedings of the World Wide Web Conference.

[43] Christof Ferreira Torres, Mathis Baden, Robert Norvill, and Hugo Jonker. 2019. ÆGIS: Smart shielding of smart con-

tracts. In Proceedings of the ACM SIGSAC Conference on Computer and Communications Security. 2589–2591.

[44] Shelly Grossman, Ittai Abraham, Guy Golan-Gueta, Yan Michalevsky, Noam Rinetzky, Mooly Sagiv, and Yoni Zohar.

2017. Online detection of effectively callback free objects with applications to smart contracts. Proc. ACM Program.

Lang. 2 (2017), 1–28.

[45] Jingxuan He, Mislav Balunović, Nodar Ambroladze, Petar Tsankov, and Martin Vechev. 2019. Learning to fuzz from

symbolic execution with application to smart contracts. In Proceedings of the ACM SIGSAC Conference on Computer

and Communications Security. 531–548.

[46] Bo Jiang, Ye Liu, and W. K. Chan. 2018. ContractFuzzer: Fuzzing smart contracts for vulnerability detection. In Pro-

ceedings of the 33rd ACM/IEEE International Conference on Automated Software Engineering.

[47] Sukrit Kalra, Seep Goel, Mohan Dhawan, and Subodh Sharma. 2018. Zeus: Analyzing safety of smart contracts. In

Proceedings of the 25th Annual Network and Distributed System Security Symposium.

[48] Loi Luu, Duc-Hiep Chu, Hrishi Olickel, Prateek Saxena, and Aquinas Hobor. 2016. Making smart contracts smarter.

In Proceedings of the 23rd ACM Conference on Computer and Communications Security.

[49] Nvica Nikolic, Aashish Kolluri, Ilya Sergey, Prateek Saxena, and Aquinas Hobor. 2018. Finding the greedy, prodigal,

and suicidal contracts at scale. In Proceedings of the 34th Annual Computer Security Applications Conference.

[50] Daniel Pérez and Benjamin Livshits. 2019. Smart contract vulnerabilities: Does anyone care? Retrieved from http:

//arxiv.org/abs/1902.06710.

[51] Anton Permenev, Dimitar Dimitrov, Petar Tsankov, Dana Drachsler-Cohen, and Martin Vechev. 2020. VerX: Safety

verification of smart contracts. In Proceedings of the 41st IEEE Symposium on Security and Privacy.

[52] Michael Rodler, Wenting Li, Ghassan O. Karame, and Lucas Davi. 2019. Sereum: Protecting existing smart contracts

against re-entrancy attacks. In Proceedings of the Network and Distributed Systems Security Symposium.

[53] David Siegel. 2016. Understanding The DAO Attack. Retrieved from https://www.coindesk.com/understanding-dao-

hack-journalists.

[54] Sunbeom So, Myungho Lee, Jisu Park, Heejo Lee, and Hakjoo Oh. 2020. VeriSmart: A highly precise safety verifier for

ethereum smart contracts. In Proceedings of the 41st IEEE Symposium on Security and Privacy.

[55] Christof Ferreira Torres, Julian Schutte, and Radu State. 2018. Osiris: Hunting for integer bugs in ethereum smart

contracts. In Proceedings of the 34th Annual Computer Security Applications Conference.

[56] Petar Tsankov, Andrei Dan, Dana Drachsler-Cohen, Arthur Gervais, Florian Bunzli, and Martin Vechev. 2018. Securify:

Practical security analysis of smart contracts. In Proceedings of the 25th ACM Conference on Computer and Communi-

cations Security.

[57] Siwei Wu, Dabao Wang, Jianting He, Yajin Zhou, Lei Wu, Xingliang Yuan, Qinming He, and Kui Ren. 2021. DeFiRanger:

Detecting price manipulation attacks on DeFi applications. Retrieved from https://arXiv:2104.15068.

[58] Mengya Zhang, Xiaokuan Zhang Zhang, Yinqian Zhang, and Zhiqiang Lin. 2020. TXSPECTOR: Uncovering attacks

in ethereum from transactions. In Proceedings of the 29th USENIX Security Symposium (USENIX Security’20). USENIX

Association. Retrieved from https://www.usenix.org/conference/usenixsecurity20/presentation/zhang-mengya.

Received May 2021; revised September 2021; accepted December 2021

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 3, Article 54. Publication date: April 2022.

http://arxiv.org/abs/1902.06710
https://www.coindesk.com/understanding-dao-hack-journalists
https://arXiv:2104.15068
https://www.usenix.org/conference/usenixsecurity20/presentation/zhang-mengya

