
Adaptive Call-site Sensitive Control Flow Integrity
Mustakimur Khandaker∗ Abu Naser∗ Wenqing Liu∗ Zhi Wang∗ Yajin Zhou† Yueqiang Cheng‡

∗ Deparment of Computer Science, Florida State University, Tallahassee, USA
Email: {mrk15e, an16e, wl16c}@my.fsu.edu, zwang@cs.fsu.edu

† School of Computer Science, Zhejiang University, Hangzhou, China
Email: yajin_zhou@zju.edu.cn
‡ Baidu X-lab, Sunnyvale, USA

Email: chengyueqiang@baidu.com

Abstract—Low-level languages like C/C++ are widely used
in various applications for their performance and flexibility.
Unfortunately, these languages are prone to memory corruption
vulnerabilities, leading to control-flow hijacking attacks. Control
flow integrity (CFI) is a general principle to enforce run-time
control flow of a program to a pre-computed control-flow graph
(CFG). While the traditional context-insensitive CFI falls short
in protecting critical control transfers, recent context-sensitive
CFI research shows promising improvements but has various
limitations.

We present Control Flow Integrity with Look Back (CFI-
LB), a call-site sensitive CFI in which a conventional source-
target control transfer is strengthened by a look back into its
call-sites (return addresses). CFI-LB features the adaptive call-
site sensitivity in which each indirect call has its own level of
sensitivity and the multi-scope CFG to improve the security
even if a precise context-sensitive static CFG is not available,
especially for large programs such as GCC and NGINX. One of
the CFGs is constructed by our localized concolic execution,
which significantly extends the dynamic CFG with very low false
positives. In addition, CFI-LB is the first CFI system explicitly
designed to protect its reference monitors from race conditions.
We have built a prototype of CFI-LB. The evaluation with SPEC
CPU2006 benchmarks and NGINX indicates that CFI-LB has a
low-performance overhead (less than 5% on average for the full
protection) while increasing the security.

I. Introduction
Computer software has become increasingly complicated.

For example, the Linux kernel, first released in 1991, now
has more than 20 million lines of source code (version
4.19.1). Such complexity unavoidably leads to more and
more vulnerabilities [49], many of which can be exploited
to execute arbitrary code or escalate the privilege. Existing
deployed defenses such as data-execution prevention (DEP)
and address-space layout randomization (ASLR) make exploits
more challenging but can still be bypassed by code-reuse
attacks [46], information leaks, heap sprays, etc.
Control-flow integrity (CFI) is an effective defense against

most control-flow hijacking attacks [2]. It employs in-line
reference monitors to enforce that the run-time control flow
of a process must follow its control-flow graph (CFG), a static
graph representing the program’s legitimate control transfers.
Control flow can be changed by direct branches (i.e., direct
calls/jumps) and indirect branches (i.e., indirect calls/jumps
and returns). Direct branches are hard-coded in the program
and thus cannot be manipulated by attackers under DEP;

indirect branches load the program counter with a code pointer
from a register or a memory location. Consequently, they can
be exploited by manipulating the in-memory data, and thus
CFI needs to protect their integrity. Since its introduction,
there has been a long stream of research in CFI to improve its
performance [53], [54], increase its precision [18], [48], [50],
and protect other mechanisms [36], [39], [3].) Nevertheless,
recent research puts the security of CFI systems into serious
question [6], [16], [21], [23].

The security of a CFI system is determined mainly by three
factors: the actual CFG, the CFG construction algorithm, and
the enforcement mechanism. The actual CFG is determined
by the program structure itself. Some indirect branches have
a large set of valid targets. In this case, even a precise CFI
system could still be bypassed by taking advantage of these
valid targets [6]. The CFG construction algorithm determines
how close the computed CFG is to the actual CFG. CFGs are
often computed by the static points-to analysis, a well-known
NP-hard problem. Existing points-to analysis algorithms are
designed to be conservative; consequently, illegitimate control
transfers may be included in the resulting CFG and incorrectly
allowed by the CFI system [21]. The enforcement mechanism
can also introduce insecurity, mainly due to the trade-off
between security and performance. For example, some CFI
systems enforce an oversimplified CFG [47], [53], allowing
them to be subverted [16], [23].

Context sensitivity is an effective way to improve the
security of CFI systems [18], [48] because it takes the past
execution into consideration when validating the next target
of an indirect branch. Existing context-sensitive CFI (CS-CFI)
systems rely on the hardware support, such as Intel last branch
record (LBR) and processor tracing (PT), to obtain the recent
execution path. These hardware features provide rich context
information about both direct and indirect branches. However,
Intel LBR and PT can only be accessed in the kernel mode;
accordingly, these systems must change the kernel. This not
only increases the complexity of the design but also incurs
high performance overhead. This overhead can be partially
addressed by enforcing CS-CFI at a limited number of selected
locations, such as the syscall entrance [48], or by offloading
the run-time check to a separate CPU core [18]. However, the
former can only protect a small part of the program, and the
rest of the program may still be compromised (e.g., to leak

1

the private key of a web server); the latter reduces the number
of usable CPU cores.
In this paper, we aim at improving the security and effective-

ness of CFI with CFI-LB, control-flow integrity with look-back.
CFI-LB is a CS-CFI system that uses call-sites as the context.
Specifically, to validate the target of an indirect branch, CFI-
LB obtains the return addresses from the safe shadow stack and
only permits the control transfer if the target is valid for that
sequence of callers. This is essentially a call-site sensitive CFI
system. While deeper contexts (i.e., more call sites) provide
better security, they often incur higher overhead, making the
protection less useful. To address that, CFI-LB employs the
following strategies: first, we observe that not all indirect
branches require a deep context. In most cases, a single return
address can provide sufficient constraint on the valid targets;
while other cases require a deeper context for better security.
As such, CFI-LB features the adaptive context sensitivity that
allows each indirect branch to decide its own level of call
sites to check. Second, CFI-LB features the multi-scope CFG
to overcome the insecurity caused by imprecise/coarse-grained
CFGs. Specifically, we compute three CFGs for every program
– a dynamic CFG from dynamic profiling, a concolic CFG
from localized concolic execution, and a static CFG from
the static points-to analysis algorithm. The concolic CFG is
derived from the dynamic CFG, but significantly expands it
by exploring multiple paths at the point of interest with a
concolic execution engine. The dynamic and concolic CFGs
are precise but might be incomplete; while the static CFG
is complete but may contain extraneous control transfers. At
run-time, we apply different policies to these CFGs: control
transfers within the dynamic and concolic CFGs are trusted
and allowed by default, and these within the static CFG are
allowed but recorded for further off-line verification. With
the multi-scope CFG, CFI-LB is still secure even though a
precise context-sensitive static CFG is not available. Third,
an often overlooked pitfall of all the existing CFI systems
is race conditions against CFI’s inline reference monitors in
multi-threaded processes. Many CFI systems employ reference
monitors that save intermediate states in the memory (either
by design or due to register spilling [1], [4], [34]). These
states can be manipulated by another benign-but-vulnerable
thread under attack. A secure CFI system must be “modeled
against arbitrary read/write at arbitrary times” [35]. CFI-
LB is the first CFI system that is explicitly designed to
guarantee the atomicity of its reference monitors by leveraging
the widely-available hardware transactional memory support
(Intel TSX [28]). We have built a prototype of CFI-LB.
In addition, we propose an equation to universally quantify
the security of CFI systems. Our security and performance
evaluation demonstrates that CFI-LB can significantly improve
the security of CFI systems without causing high performance
overhead (less than 5% on average for the full protection of
indirect branches and returns and Intel TSX support).
In summary, this paper makes the following contribution:
• We propose the design of CFI-LB, a call-site sensitive

CFI system featuring adaptive context sensitivity and

multi-scope CFG to provide the balanced security and
improve the security even if a precise context-sensitive
CFG is not available (as is the reality).

• CFI-LB is the first CFI system explicitly designed to
protect the integrity of its reference monitors against race
conditions. In addition, our localized concolic execution
can significantly extend the dynamic CFG with low false
positives.

• We propose a universal quantitative metric to measure
and compare the security of both context-insensitive and
context-sensitive CFI systems.

• We have built a prototype of CFI-LB and extensively
evaluated its security and performance.

II. Call-site Sensitive CFI

In this section, we first propose a generic metric to quantify
the security of CFI systems and then present the notion of
call-site sensitive CFI with a concrete example.

A. Quantifying Context-Sensitive CFI

CFI protects a process from control-flow hijacking attacks
by confining the possible targets of an indirect branch to
these in the program’s CFG. As previously mentioned, the
security of a CFI system is determined by the following three
factors: the actual CFG, the CFG construction algorithm, and
the enforcement mechanism. The first factor is decided by the
program structure itself. For example, syscalls in the kernel are
dispatched through a large table of syscall handlers, indexed
by the syscall number. Recent versions of the Linux kernel for
x86-64 contain more than 320 syscalls. This particular indirect
call hence has a very large legitimate target set. Target sets
can also be affected by the precision of the CFG construction
algorithm (the second factor), i.e., points-to analysis. Points-to
analysis is a static analysis to calculate the variables or data
structures a pointer can point to. Precise points-to analysis
algorithms rely on context sensitivity (e.g., call-site sensitivity)
to improve precision. Unfortunately, such algorithms often do
not scale well. Few can handle the code size of real-world
programs such as Apache and GCC, and even fewer are publicly
available and regularly maintained (we report our own experi-
ence later). The last factor is the CFI enforcement mechanism.
CFI inserts online reference monitors into the target program
to enforce its policies. A precise CFI enforcement requires
to perform more thorough check of the run-time states and
thus may lead to higher performance overhead. As such, some
CFI systems trade precision and security for performance,
making them bypassable. Existing CFI systems have applied a
wide spectrum of designs in these three factors. An effective
measurement of the security of CFI systems should take all
these three aspects into consideration.

In a recent survey of (context-insensitive) CFI systems [3],
Burow et al. propose to use the following equation to quantify
the security of CFI systems:

QSCFI = EC × 1

LC
(1)

2

CS1

CS2

CS3

IndCalla

IndCallb

F1

F2

F3

Fa

Fb

...

...

...

...

Fig. 1. An example of equivalence classes. CSx represents a call site; IndCall
represents an indirect call instruction; and Fx represents a function.

EC is the total number of the equivalence classes and LC is the
largest size of the equivalence classes. An equivalence class
(EC) is a group of targets that a CFI system cannot distinguish.
Fig. 1 gives an example of ECs: function Fa and Fb both
contain an indirect call, IndCalla and IndCallb, respectively.
The former targets function F1 and F2, and the latter targets
F2 and F3. Fa is called by call site CS1 and CS2 while Fb is
called by CS3. A traditional CFI system validates the targets
without considering the contexts. This creates at most two
ECs ({F1, F2} and {F2, F3}). However, the CFI enforcement
may merge these two classes. For example, the original CFI
system [2] inserts a label at each target and enforces CFI by
checking the label. This requires these two ECs be merged
because each target function can only bear one label; the label
of F2 thus has to be shared by F1 and F3. Some CFI systems
trade security for performance by assuming every indirect call
can target any address-taken function. As such, they have a
single large EC. In summary, EC reflects the precision of
both the CFG and the enforcement mechanism. Eq. 1 is an
effective measurement of the security of context-insensitive
CFI systems, but it is not as effective for CS-CFI systems.
Call-site sensitive CFI takes the call path into consideration

when enforcing the CFI policy. This leads to more, smaller
ECs. For example, assume there are four valid execution paths
in Fig. 1: (CS1 → Fa → IndCalla → F1), (CS2 → Fa →
IndCalla → F2), (CS3 → Fb → IndCallb → F2), and
(CS3 → Fb → IndCallb → F3). These four paths are divided
into three ECs with a maximum size of 2 – the first two paths
are in its own class separately, and the last two are in one class
together. However, different context-sensitive CFI systems may
use different contexts, leading to different numbers of ECs
in the CFG. Moreover, the number of ECs could increase
exponentially while the maximum EC size changes at a much
slower rate (see an example in Section III-B). Because of these
reasons, Eq. 1 is not suitable for comparing CS-CFI systems.
To address that, we propose to use the following equation to
measure the security of all CFI systems:

QSCFI = AV GEC × LC (2)

AV GEC is the average size of all the ECs, and LC is still the
size of the largest EC. In Eq. 2, the larger QSCFI is, the less
secure. A useful feature of Eq. 2 is that QSCFI now has a
theoretical limit of 1, in which every target can be individually
distinguished and validated.

B. Call-site Sensitive CFI

1 typedef int (*Handler)(char *);

2 int proceed(Handler handler, char *root_path)

3 {

4 ...

5 return handler(root_path);

6 }

7

8 void auth()

9 {

10 char *user_name;

11 char *passwd;

12 char id[80];

13 int attempt = 5;

14 Handler handler;

15

16 while (attempt > 0) {

17 handler = &on_failure;

18 username = passwd = null;

19

20 scanf("%ms", &username);

21 scanf("%ms", &password);

22

23 passwd = salt_passwd(username, passwd);

24 sprintf(id, "%s;%s", username, passwd);

25

26 if (is_admin(id)) {

27 handler = &on_admin;

28 proceed(handler, user_home_dir);

29 } else {

30 proceed(handler, "/tmp");

31 }

32 attempt--;

33

34 //clear passwd, free user_name, passwd

35 ...

36 }

37 }

Fig. 2. An example for call-site sensitive CFI

CFI-LB enforces a call-site sensitive CFI policy in which the
targets of an indirect branch are validated in the context of call-
sites (i.e., return addresses on the stack). By doing so, we can
partition equivalence classes into finer-grained sets, reducing
the average EC size and improving the overall security (Eq. 2).

Fig. 2 illustrates the benefits of call-site sensitivity, in which
the auth function authenticates the user and calls the proceed
function with a function pointer decided by the results of
auth. In the context-insensitive CFI, the indirect call at L5
can legitimately transfer to both on_admin and on_failure.
That is, an attacker can execute on_admin even if the password
authentication fails by exploiting the buffer overflow at L24
to overwrite handler. By nature, even a precise context-
insensitive CFI will fail to provide meaningful protection for
this program.

With CFI-LB, we take the call sites into account when
validating the targets of handler at L5. Specifically, proceed
has two call sites at L28 and L30. The valid targets of L5 thus
can be presented by tuple (L28, L5, on_admin) and (L30, L5,
on_failure). To validate the targets at L5, we retrieve the

3

return address from the stack, combine it with the location
of the indirect call (L5) and the target address, and check
whether the formed tuple is valid or not. Consequently, we
can prevent the aforementioned attack. Note that the attacker
cannot overwrite the return address of proceed because it is
pushed to the stack after the overflow, and we employ a secure
shadow stack to protect return addresses. Any modifications to
them will trigger an exception. In other words, the call sites
used in the validation are trusted.
What we just described is technically a one call-site sensitive

CFI. Sometimes more call sites need to be examined to provide
a finer-grained context, for example, if the indirect call in L5 is
wrapped in another function and proceed calls this function
instead of directly calling handler. In this case, a two call-site
sensitive CFI-LB can recover the lost precision. As expected,
call-site sensitivity may fall short in some cases even though
it is overall a strong protection. For example, it is possible
to merge the two calls of proceed in Fig. 2 by introducing
a new local variable to store the arguments of root_path.
Now, proceed has only a single call site. This prevents CFI-
LB from distinguishing the two targets of handler. To further
improve the precision, we need to take the executed branches
into account, i.e., which branch of is_admin is executed.
An Intel-PT based CFI can theoretically provide this kind of
protection [18]. However, the CFG is the limitation here – a
points-to analysis with that level of precision (context- and
path-sensitive) is hardly scalable, and its public availability is
virtually non-exist, especially for the C/C++ language.

III. System Design
In this section, we first describe how we enforce one call-site

sensitivity in CFI-LB and then describe two unique features
of CFI-LB, adaptive call-site sensitivity and multi-scope CFG,
to make our design more scalable and secure.
Assumptions: like all other CFI systems, we assume that the
code integrity of the target program is protected by W⊕ X,
a common protection in all commodity operating systems. A
secure CFI system has to protect both returns and indirect
calls (or jumps). We assume that return addresses are protected
by a secure shadow stack [11], [29], which saves a copy of
return addresses to a protected stack and verifies that they have
not been changed before returning. Our prototype uses CPI’s
SafeStack [31] for this purpose. SafeStack separates return
addresses and others safe data into a separate safe stack. It
can protect return addresses from being compromised, similar
to the shadow stack.

A. Enforcing One Call-site Sensitivity
To enable its protection, CFI-LB instruments the program

to insert inline reference monitors that protect the program’s
run-time control flow. We describe this process in two steps,
compiling-time instrumentation and run-time verification.
Compiling-time instrumentation: Fig. 3 shows the CFG for the
example program in Fig. 2. There is one indirect call (L5)
(and four returns) that needs protection. To protect indirect
calls, CFI-LB uses a hash-table based set membership test.

auth

L28: call proceed
L29: ...

L30: call proceed
L31: ...

ret

on_admin

.....

ret

on_failure

....

ret

1
1

1

1

2 2

2

2

proceed

...
L5: call *eax

ret

Fig. 3. CFG for the example in Fig. 2

For one call-site sensitivity, the set consists of tuples of the
following format: (return site, indirect call, target). Therefore,
the set for Fig. 3 contains (L29, L5, on_admin) and (L31,
L5, on_failure). We instrument the program to initialize the
hash table with these two entries before executing the main
function. Our current prototype uses a simple hash function
to calculate the hash index: xor the three members of each
tuple and mod the set size. We practically adjust the set size
to reduce hash conflicts. Our experience with large programs,
such as SPEC CPU2006, shows that this simple hash function
is fast and effective. For example, the hash table for 403.gcc
has 1,541 entries with only 74 conflicts. More advanced hash
functions can easily be adopted if necessary. The hash table
is write-protected after the initialization.

We further instrument the program to insert a reference
monitor before each indirect call. In our prototype, we in-
strument the program at the source code level. The hash table
search function is implemented as a function but inlined and
specialized at each instrumentation point (e.g., L5 in Fig. 3).
Inlining is used to avoid introducing an artificial function (i.e.,
the validation function) that can legitimately return to all the
locations before the indirect calls.

We use the hash-table based enforcement because it will not
introduce imprecision since it does not merge the target sets of
different indirect calls, and it has near constant performance.
As we will show later, the size of target sets can increase
exponentially when the level of call-site sensitivity increases.
Hash table can provide the consistent performance.
Run-time verification: at run-time, the reference monitor re-
trieves the target from the register/memory and return ad-
dresses from the shadow stack, hash them with the location
of the indirect call (hard-coded in the reference monitor), and
search the hash table for validation.
Atomicity of reference monitors: an often overlooked attack
vector against CFI is the race condition – if a reference monitor
saves its intermediate states in the memory, the attacker
can compromise these states by exploiting vulnerabilities in
another thread. Even though the window of vulnerability is
narrow, reference monitors are called frequently enough for
this to be a concern. A simple defense against that is to rewrite
reference monitors to only use the registers. This method
works because each CPU core has its own set of registers, and
one core cannot change another core’s registers. However, it is

4

difficult to implement since it requires hand-coding reference
monitors in assembly instructions. Most existing CFI systems
rely on the compiler for register allocation (e.g., systems
implemented in the LLVM IR [1], [4], [34]). Their internal
states might be spilled to the stack by the compiler, making
them potentially vulnerable.
To address that, CFI-LB encapsulates its reference monitors

in the hardware transactional memory based on Intel TSX [28].
Intel TSX provides two software interfaces, hardware lock
elision (HLE) and restricted transactional memory (RTM).
CFI-LB uses the RTM interface, which consists of three new
instructions, xbegin, xend, and xabort, to start, end, and
abort a transaction, respectively. When a transaction is started,
the CPU records all the memory accesses by the transaction
and monitors the system for race conditions (i.e., read-write
and write-write conflicts). If a race condition is detected, the
transaction is aborted and its changes are rolled back; other-
wise, it is committed to the memory. When a transaction fails,
the CPU returns the error conditions in the eax register. One
of the return status is conflict-detected (_XABORT_CONFLICT).
However, we cannot simply report a conflict as an attack
because a transaction can fail without real data conflicts –
Intel TSX detects data conflicts at the granularity of a cache
line (64 bytes) [28]. False sharing in the cache line or cache
conflicts can all cause transactions to fail. In our experiment
with the NGINX server, we found that transactions have a
chance of 0.003% to fail even without race conditions. To
address that, we retry the transaction multiple times before
reporting a failure. This design does not weaken the security
because the verification can not be compromised as long as the
transaction succeeds. To the best of our knowledge, CFI-LB
is the first CFI system that is explicitly designed to guarantee
the atomicity of its reference monitors.

B. Adaptive Call-site Sensitivity
As specified in Eq. 2, the security of CFI-LB is determined

by the average EC (equivalence class) size and the largest EC
size. In the following, we use the GCC benchmark in SPEC
CPU2006 as an example to demonstrate the impact of different
levels 1 of call-site sensitivity to these two parameters. Our
measurement of other benchmarks shows a similar trend (Sec-
tion IV). We then describe the first feature of CFI-LB, adaptive
call-site sensitivity, to balance security and performance.

TABLE I
Number of ECs and average EC size for different levels of sensitivity.

Sensitivity Call-site(0) Call-site(1) Call-site(2) Call-site(3)

of ECs 220 795 2763 6463
AV GEC 2.7 1.53 1.38 1.33

Average EC size: the goal of call-site sensitivity is to limit
the choices that an attacker has in compromising the control
flow by reducing EC sizes. Generally speaking, more levels of
call-site sensitivity lead to smaller average EC sizes. Table I

1The level of sensitivity counts how many levels of return addresses to use.

shows the result for the GCC benchmark 2. For example, with
the three call-site sensitivity, the average EC size decreases to
1.33 but the number of ECs increases more dramatically (29×
of the context-insensitive CFI). This implies that a constant-
time membership test algorithm is essential to the performance
of CFI-LB. Nevertheless, increasing the level of sensitivity can
still harm the performance because it needs more memory
accesses to retrieve the context.

TABLE II
EC distribution over sizes of the target sets

Sizes Call-site(0) Call-site(1) Call-site(2) Call-site(3)

1 149 674 2372 5423
2 27 54 223 667
3 10 18 48 172
4 7 17 35 70

5-10 20 26 56 93
11-20 4 4 28 37
21-40 2 1 0 0
54 1 1 1 1

Total 220 795 2763 6463

Largest EC size: the security of a CFI system also relies on
the largest EC size. When increasing the call-site sensitivity,
larger ECs break down into smaller ECs. This can potentially
reduce the largest EC size. Table II shows the distribution of
EC sizes. For example, with one call-site sensitivity, there are
674 ECs having a single target and 26 ECs having between
5 and 10 targets. When we increase the sensitivity to three,
these numbers increase to 5, 423 and 93, respectively.

Interestingly, the maximum EC size for every case remains
the same (54). This problematic indirect call is located in
Function get_insn_template, which uses a function pointer
to generate templates for different instructions. The reason that
this indirect call defies call-site sensitivity is because its only
caller, final_scan_insn, is a recursive function. As such,
the caller can appear many times on the call stack, and no
level of call-site sensitivity can increase the precision for this
call. We could theoretically merge duplicated return addresses
in the context. Such an implementation is more complicated
and has higher overhead. In summary, using a high-level of
sensitivity across the program has the following issues: higher
performance overhead, explosion of the number of ECs, and
cases that it does not improve security.
Adaptive call-site sensitivity: to address these problems, CFI-
LB features adaptive call-site sensitivity, in which the level
of sensitivity is decided independently for each indirect call.
The goal is to reduce the average EC size while avoiding the
explosion of the number of ECs. The algorithm is summarized
as the following:

1) Repeat the following for the maximum level n from 0
and 3: for each indirect call, calculate AV GEC for each
level of sensitivity from 0 to n, and select the smallest
level that has the smallest AV GEC for this indirect call.

2We use the CFG generated through dynamic profiling from the reference
inputs of the SPEC CPU2006 benchmark to avoid the imprecision of CFG
generation algorithms.

5

TABLE III
Distribution of adaptive call-site sensitivity. Note that the largest

indirect call is correctly assigned to level 0 since no additional
level will reduce its target size.

Call-site Max. target # of # of Avg. EC
Depth Set Size Indirect Calls ECs Size

0 54 161 161 1.48
1 20 23 262 1.37
2 17 36 787 1.50

Total 220 1210 1.47

2) Pick the maximum level n that has the best security
according to Eq. 2. n is the maximum level of sensitivity
for the whole program.

The results of applying this algorithm to 403.gcc is shown
in Table III. The maximum level is 2 with an average EC size
of 1.47. The total EC number is 1, 210, less than half of the
case if two call-site sensitivity is applied uniformly. Note that
CFI-LB’s hash-table based CFI enforcement can easily support
adaptive sensitivity by assuming the missing call-sites to be
zero in lower levels.

C. Multi-scope CFG
CFI-LB’s second feature, multi-scope CFG, focuses on

improving the security even if a scalable context-sensitive
points-to analysis algorithm is, unfortunately, not available for
C/C++ programs (the current state of the art in the points-to
analysis). We combine different CFGs together and apply both
on-line and off-line validation of control transfers.
The need for multi-scope CFG: there are two ways to generate
CFGs: dynamic analysis and static analysis. Dynamic analysis
runs the program under a dynamic binary instrumentation
(DBI) tool to record an execution history of the program and
construct the CFG from it. For brevity, we call the CFG created
in this way a dynamic CFG. A dynamic CFG has no false
positives, i.e., all the control transfers are valid. However,
it suffers from false negatives, i.e., the CFG is incomplete
because dynamic analysis cannot cover all the code paths.
Static analysis uses points-to analysis to calculate the CFG

from either the source code or the program binary. Tradi-
tionally, points-to analysis is used by compilers to optimize
programs. The produced CFG is an over-approximation of
the real CFG, i.e., the CFG has false positives (extra control
transfers) but no false negatives (missing control transfers).
One way to improve the precision of points-to analysis is
context sensitivity. Call-site sensitivity is often used for pro-
cedural programming languages like C/C++. Unfortunately,
precise points-to algorithms do not scale well, especially
for complicated programs like GCC. The availability of such
algorithms is even worse. The best choice at the time of writing
seems to be the DSA algorithm, which has not been maintained
for a long time and contains known algorithmic errors [32],
[33]. Existing CFI systems often use an imprecise CFG, such
as all address-taken functions [47] or the type-based CFG [1].
Given this reality, CFI-LB proposes the multi-scope CFG

to improve security despite the imprecision in the points-to

analysis: a security mechanism like CFI should have no false
positives and limited false negatives to be secure and usable 3.
Note that a false positive in the CFG leads to false negatives
in the CFI (no alarm raised where it should be), and vise
versa. Therefore, the overall CFG we use should have no false
negatives and limited false positives. CFL-LB’s multi-scope
CFG consists of three CFGs: a dynamic CFG generated by
dynamic analysis, a static CFG generated by a scalable but
conservative points-to analysis, and a concolic CFG generated
by our localized concolic execution. The relation of these three
CFGs are shown in Fig. 4.

Static CFG

Dynamic CFG

Concolic CFG

Fig. 4. Multi-scope CFG in CFI-LB

On-line and off-line verification: after generating those CFGs,
CFI-LB applies both on-line and off-line verification of in-
direct call targets. Specifically, any run-time control transfer
within the dynamic CFG is allowed because the dynamic
CFG contains only valid control transfers. Our experiments
show that the concolic CFG has a very low false positive
rate. As such, we also allow any run-time control transfer
within the concolic CFG. However, the static CFG may cause
false negatives in the CFI. We allow a control transfer in
this CFG (but outside the dynamic and concolic CFGs) to
proceed at run-time but record the target and its context (e.g.,
the call stack) for the off-line analysis. If the analysis proves
that the control transfer is legitimate, it will be added to the
dynamic CFG for future use. Any control transfer outside
the static CFG is a true violation and will be immediately
blocked. The rationale of this design is that only few run-
time control transfers require off-line verification because of
the effectiveness of the dynamic and concolic CFGs; we can
gradually expand the dynamic CFG, and eventually any run-
time control transfers out of the dynamic and concolic CFGs
become suspicious.

To support multi-scope CFG, we mark each hash table entry
with its scope and record the run-time context as indicated by
the scope. The context we record includes the call stack and the
arguments to the target function. We can use this information
to validate the control transfer. In the following, we present
our method to generate the concolic CFG.

D. Localized Concolic Execution
The goal of localized concolic execution is to extend the

dynamic CFG with very few false positives so that CFI-LB

3A typical counter-example is UAC of Window Vista that trained users to
ignore and click through any access control questions.

6

can trust them without further validation.
Overview: concolic execution, as its name indicates, is a
combination of concrete and symbolic execution. It maintains
the symbolic relations between program variables while con-
cretely executing the program. Concolic execution is often
used to improve path coverage in software testing: when the
concolic execution engine finds a conditional branch, it adds
the branch’s condition to the path condition. The satisfiability
of the path condition determines whether a path is feasible or
not. To explore an alternative path, the engine tries to solve the
related path condition with a constraint solver, such as Z3 [17].
If the solver proves the path condition is satisfiable, it provides
a solution to the related symbolic variables that will lead the
execution to that path in a concrete execution.
Theoretically, we could use concolic execution to explore all

the paths of the program and derive a complete CFG. Unfor-
tunately, concolic execution does not scale well because of the
path explosion problem, in which the number of feasible paths
grows exponentially to the number of conditional branches and
can even be infinite if the program has unbounded loops. Our
target programs are too complicated to be fully explored. For
example, 403.gcc has about 1 million instructions.
CFI-LB addresses this challenge by limiting the scope

of concolic execution with additional heuristics to further
improve its scalability. Because the generated CFG is used in
the call-site sensitive CFI, we must generate, for each indirect
call, both its target set and the associated contexts. CFI-LB’s
concolic execution is localized to the individual indirect call
site. Specifically, at each indirect call site, it searches backward
in the program’s CFG for the callers of this indirect calls and
concolically executes these callers until the execution reaches
the indirect call. A list of the targets and their associated
contexts will be returned at the indirect call site. The intuition
behind this approach is that the function pointer used by the
indirect call likely is assigned or indexed by its callers. By
exploring more code paths in the callers, we can potentially
assign other legitimate values to this function pointer. In the
following, we will describe each step in detail.
Step I: recording initial program states: CFI-LB’s localized
concolic execution is binary based. As previously mentioned,
concolic execution runs the program both concretely and
symbolically. It is necessary to provide the valid inputs to the
starting function so that the concrete execution can proceed
without causing exceptions. Our target programs are often
very complicated. It is generally unfeasible to achieve this
programmatically. To this end, we execute the program under
a dynamic binary instrumentation (DBI) tool with some valid
inputs (e.g., a well-formed C program for GCC) and record a
complete execution history. At the entry point of an interested
function, we reconstruct the function’s arguments, the global
variables, the registers, and the heap from the execution history
and take a snapshot of them. This snapshot provides a set of
valid inputs for the concolic execution. We use Intel Pin as the
DBI tool in our prototype [30].
Step II: locating starting functions: after recording the execution
history, our system needs to find the callers of the interested

indirect call site as the starting function for the concolic
execution. While recording the execution history, the DBI tool
also generates a dynamic CFG for the program. Technically,
we can search this CFG for the callers of this indirect call
and start concolically executing them. However, this approach
does not work well – sometimes the indirect call that we are
interested in is not even executed by the DBI tool because
of the limited coverage of the initial input. To address that,
we extract from the program binary a CFG that contains only
direct calls, and further extend this CFG by the indirect control
transfers from the dynamic CFG. We then locate the callers of
the interested indirect call in this CFG. If a located caller has
been executed by the DBI tool, we add this caller into a work
list for the concolic execution. We make sure that the depth of
the callers is larger than or equal to the depth of this indirect
call’s sensitivity.

main:
...
call FullSortTophits
...

FullSortTophits:
...
call specqsort
...

SSIWriteIndex:
...
call specqsort
...

GSISortIndex:
...
call specqsort
...

specqsort:
...
call qst
...

qst:
...
call rcx
...

Fig. 5. Locate the callers of an indirect call (in 456.hmmer benchmark)

Fig. 5 illustrates how this works. Specifically, the qst func-
tion, which implements quick sort, contains an indirect call
through the rcx register. qst has a single caller, specqsort.
Unfortunately, specqsort has not been executed by the DBI
tool; we then have to search backwards further. specqsort in
turn has three callers, but none of them have been executed by
the DBI tool either. Searching further back, we find that one of
specqsort’s callers, FullSortTophits, can be called by the
main function, which certainly has been executed by the DBI
tool. Therefore, we add main as a starting function and record
the path from main to qst (main → FullSortTophits
→ specqsort → qst). This information is used by the
concolic engine to limit the depth of exploration (more details
in the following). Note that even though the main function
includes a call to FullSortTophits, FullSortTophits may
not have been executed by the DBI tool if it is guarded by
an unsatisfiable branch condition during the initial execution.
Our concolic engine can solve the related path condition and
execute the function. If we just search for starting functions
in the dynamic CFG generated by the DBI tool, we cannot
find any executed callers for qst. Therefore, by searching for
starting functions in the combine CFG, we can discover more
targets of an indirect call.

7

Step III: concolically executing code: after discovering the
starting functions, we start executing them one by one concol-
ically. Specifically, we use the aforementioned snapshot as the
initial inputs to the starting function and execute the program
concretely while maintaining the relation between symbolic
variables. In particular, we maintain a set of path conditions.
If a new conditional branch is found, we add the condition (or
its inverse depending on which branch the concrete execution
takes) to the current path condition. After every emulation,
we iterate through the generated path conditions and check
whether a path has been taken or not. For each path not-
taken, we then query a SMT solver to check whether its path
condition can be satisfied. If so, the solver will return a model
that will execute the new path. This process repeats until
all the paths have been explored. When the concolic engine
reaches the indirect call site, we retrieve the values stored in
the register or memory referenced by the indirect call and add
it and its context into the target set of the indirect call.
Variable symbolization: when concolic execution is used to
explore a whole program, we just need to symbolize the
external inputs, such as the command line arguments and files.
In CFI-LB, we only concolically execute a part of the program.
Therefore, we symbolize all the function arguments, global
variables, and external inputs (e.g., files). Specifically, if a
variable is a scalar (e.g., an integer), we create a new symbolic
variable for it; if a variable is a pointer to a data structure,
we keep the pointer’s concrete value (i.e., the address of the
structure in the snapshot) but symbolize the data structure
it points to; if a variable is a function pointer, we do not
symbolize it otherwise it can point to arbitrary memory or
whatever the solver produces. The following example contains
all these three cases:

void specqsort(char* base, int n, int size, int

(*compar)());

By symbolizing all the inputs external to the starting function,
we essentially assume that they can take any value. Conse-
quently, we over-approximate the results (false positives in the
CFG) because some values provided by the solver may not be
possible in a normal execution.
Optimization: our concolic engine uses a few measures to
improve the scalability. For example, we limit each loop to only
five iterations if the loop is unbounded. One of the most signifi-
cant challenges to scalability is function calls. The instructions
to simulate can cascade quickly when function calls nest. To
address that, we simply ignore the function calls unrelated to
the indirect call: we have mentioned that we maintain a path
from the starting function to the indirect call. Functions on this
path are concolically executed while functions not on the path
are ignored. However, if any argument to an ignored function
is symbolic, we symbolize the function’s return value. This
is another over-approximation since we assume the function’s
return can take any value if one of its arguments is symbolic.
Not all unrelated functions are ignored. Specifically, our

execution engine can emulate more than 60 common libc
functions. If an unrelated function is a libc function, we

call the corresponding emulated function, which simulates the
behaviors of the function. Most libc functions are straight-
forward to emulate. For example, we symbolize the related
buffer for functions such as fread, fgets, and getenv since
they accept inputs from the external resources. For functions
that modify the memory (e.g., �strcat, memcpy, strcpy), we
emulate their operations on the memory (e.g., to create a
new buffer) and symbolize the resulting memory if any of the
input is symbolic. Functions like strlen is interesting. As we
have mentioned, CFI-LB symbolizes the content of a buffer
but neither its address nor its length. To correctly simulate
strlen, the symbolic engine needs to support variable length
buffer, as well as to change the solver’s memory model. Our
experience with several publicly available symbolic engines
shows that these features currently are not well supported. To
address that, we just symbolize the return value of strlen if
its input is a symbolic buffer. Despite these approximations,
our experiments with large programs show that the computed
target set contains relatively few false positives.

E. Prototype of CFI-LB
We have built a prototype of CFI-LB for the Intel x86-64

architecture. We wrote a tool for the Intel Pin DBI framework
to record the program execution and implemented the localized
concolic execution based on the Triton symbolic engine [43].
The instrumentation is implemented in the Clang’s CodeGen
module, a module after the source parsing but before the
LLVM IR generation. We used LLVM’s CFL-AA alias analysis
algorithm to generate the static CFG. Overall, our prototype
has 4500+ lines of C/C++ code and 500+ lines of python code.

IV. Evaluation
We present the evaluation of our prototype in this section. In

particular, we aim at answering the following questions: first,
whether adaptive call-site sensitivity improves the security of
CFI as measured by Eq. 2 in Section II; second, whether the
localized concolic execution can extend the dynamic CFG with
few false positives; third, what’s the performance overhead of
our prototype in the different configurations.

A. Security Evaluation
To answer the first question, we need to quantitatively

analyze the security of CFI-LB using Eq. 2.
Effectiveness of call-site sensitivity: intuitively, the security of
CFI improves when both average and largest EC sizes de-
crease. Fig. 6 shows the impact of call-site sensitivity on
the number of ECs, the average EC size, and the largest EC
size. As the level of sensitivity increases, the average EC
size generally drops, and the attacker has less choices of the
legitimate targets. For example, at three call-site sensitivity,
the average EC sizes of three benchmarks (perlbench, gcc,
and gobmk) drop to less than half of the context-insensitive
CFI. These benchmarks happen to be the three largest ones.
Another benchmark, h264ref, drops to about 70%. However,
the remaining three benchmarks, hmmer, bzip2 and sjeng, have
the same average EC size as the context-insensitive CFI.

8

TABLE IV
Effectiveness of adaptive call-site sensitivity. The table shows the max call-site level, the number of indirect calls in each level, and for each

level, the number of ECs and the average EC size. The last column shows the improvement of CFI-LB over context-insensitive CFI.

Benchmark Lang Max Level # of IndCalls # of ECs AV GEC Per Level AV GEC LC QSCFI−LB/QSCFI(0)

400.perlbench C 3 62/8/3/7 62/30/114/492 1.02/1.0/1.21/2.77 2.28 115 1/2.4
401.bzip2 C 0 12 12 1.0 1.0 1 1
403.gcc C 2 161/23/36 161/262/787 1.48/1.37/1.50 1.47 54 1/1.84
429.mcf C 0 0 0 0 0 0 0
445.gobmk C 2 36/15/12 36/39/98 16.86/9.44/12.76 12.86 427 1/2.4
456.hmmer C 0 9 9 1.0 1.0 1 1
458.sjeng C 0 1 1 6.0 6.0 6 1
462.libquantum C 0 0 0 0 0 0 0
464.h264ref C 3 68/2/4/1 68/20/48/12 1.5/1.05/1.15/1.25 1.31 2 1/6.4
471.omnetpp C++ 3 226/2/8/3 226/86/156/60 1.81/1.0/1.04/1.7 1.44 168 1/1.45
473.astar C++ 0 1 1 1.0 1.0 1 1
483.xalancbmk C++ 3 1960/25/30/48 1960/117/118/262 1.06/1.12/1.20/1.71 1.14 26 1/1.52
433.milc C 0 1 1 2.0 2.0 2 1
444.namd C++ 0 12 12 1.0 1.0 1 1
447.dealII C++ 3 100/3/4/1 10/19/20/9 1.04/1.0/1.0/1.11 1.03 2 1/1.07
450.soplex C++ 0 56 56 1.0 1.0 1 1
453.povray C++ 2 40/3/9 40/10/33 1.6/4.2/2.12 2.12 9 1/1.06
470.lbm C 0 0 0 0 0 0 0
482.sphinx3 C 0 0 0 0 0 0 0
NGINX C 3 94/18/0/11 94/89/0/58 5.54/1.06/0.0/4.91 3.73 62 1/3.3

They happen to have the smallest code sizes. It seems that
complex code benefits more from call-site sensitivity. Note
that the average EC size for gobmk increases from two call-
site sensitivity to three. This is possible if the total EC size
increases faster than the number of ECs.
However, we found that the largest EC size in almost all

the benchmarks do not meaningfully reduce, except h264ref
(reduced to 20%). We further looked into the reasons of
this. First, for gcc, the caller of this particular indirect call
is a recursive function; thus its largest EC cannot be broken
down regardless the level of sensitivity. Second, the largest EC
of gobmk is related to an indirect call in the shapes_callback
function, which handles different board shapes in a Go game.
shapes_callback are called by a sequence of callers: matchpat→
matchpat_loop → do_matchpat. The function pointer called by
shapes_callback is actually defined in the caller of matchpat;
therefore increasing the sensitivity to four will significantly
reduce the largest EC size of gobmk. However, this might lead
to the explosion of EC numbers. Third, perlbench cannot benefit
from increasing the level of sensitivity because the related
indirect call is called close to the main function. Using a higher
level of sensitivity will go into the C run-time (executed before
main) without improving security.

In short, call-site sensitivity improves the security of CFI
systems since the average EC size decreases while the largest
EC size remains the same or also decreases.
Effectiveness of adaptive call-site sensitivity: CFI-LB employs
the adaptive call-site sensitivity to balance security, perfor-
mance, and the number of ECs. As shown in Fig. 6, the number
of ECs can increase quickly when the level of sensitivity
increases. To address that, CFI-LB calculates, for each indirect
call, the sensitivity level that leads to the minimal average EC

size. Table IV shows the results of applying adaptiveness to
these benchmarks, including SPECint2006, the C/C++ bench-
marks of SPECfp 2006, and NGINX. In particular, Fig. 6
shows that increasing the level of sensitivity does not improve
the security for hmmer, bzip2, and sjeng. Our adaptive algorithm
correctly sets their max levels to 0. The same is applicable to
astar, namd, and soplex. The algorithm can often assign level 0
to the majority of indirect calls. For example, 1, 960 indirect
calls out of the 2, 063 ones for xalancbmk are assigned to level
0 with an average EC size of 1.06. Overall, the final average
EC sizes are well under control except for gobmk and sjeng. The
structure of either programs is not very amicable to call-site
sensitivity. The last column shows the improvement of CFI-
LB over the context-insensitive CFI as measured by Eq. 2.
Note that a smaller QS indicates better security. As such,
the best improvement is h264ref, while context-insensitive CFI
can already provide sufficient protection for bzip2, hmmer, and
several other benchmarks.

We also evaluated our prototype with NGINX. We built NGINX
with OpenSSL, pcre, and zlib libraries, and used the NGINX test-
suite as the standard inputs. The results are shown in Table IV
as well. The largest EC has 62 targets and the average EC size
is 3.73. Unlike the benchmarks in SPEC CPU2006, NGINX has
11 indirect calls located in the callback functions. For example,
during the initialization, the OpenSSL library registers the
OPENSSL_cleanup function to be called at the normal process
termination (via atexit). OPENSSL_cleanup is thus a callback
function called by an external module (i.e., glibc in this
case). OPENSSL_cleanup contains an indirect call that usually
calls ssl_library_stop to stop the SSL library. To protect this
indirect call, CFI-LB has to limit the call sites within the
NGINX program because the external module could be loaded

9

0 1 2 3
0

10

20

30

N
or
m
al
iz
ed

#
of

EC
s

perlbench

bzip2
gcc

gobmk

hmmer

sjeng

h264ref

0 1 2 3

0.4

0.6

0.8

1

N
or
m
al
iz
ed

A
V
G

E
C

0 1 2 3

0

200

400

Level of sensitivity

La
rg
es
tE

C
Si
ze

Fig. 6. The impact of call-site sensitivity on the number of ECs, average
EC size, and the largest EC size for C benchmarks in Spec CPU2006. Level
0 represents the traditional context-insensitive CFI. The number of ECs and
average EC size are normalized to fit in the figures. 429.mcf and 462.libquantum
have no indirect calls exercised. The curve for C++ benchmarks are similar.

at a different location each time the program is run. To improve
the protection of callback functions, we could compile and link
these modules statically into the main program or update the
CFGs at the run-time [38].
In short, adaptive call-site sensitivity can substantially im-

prove the security of CFI while curbing increases in the
number of ECs.
Effectiveness in preventing control flow hijacking: we used the
RIPE benchmark [51] and three real-world vulnerabilities
to test whether CFI-LB can detect and block control-flow
hijacking attempts. These three vulnerabilities consist of two
heap overflows that target a function pointer and a stack-
based overflow that targets the return address. The former
tests CFI-LB’s forward-edge protection while the latter tests
the effectiveness of CFI-LB’s backward-edge protection (i.e.,
SafeStack [44]). We modified the existing PoC exploits [37],
[42] to account for the difference in the code generated by GCC
and Clang. These PoC exploits assume that ASLR is disabled.
In reality, attackers often leverage information leaks to learn

the necessary locations before the attack. We completely
instrumented all the vulnerable programs with CFI-LB and
use their test-suites for the CFG generation.

RIPE: RIPE is a 32-bit buffer-overflow benchmark suite.
Since our prototype is based on the x86-64 architecture, we
modified a few lines of the assembly code in the benchmark
to make it work. During the evaluation, we first generated
the dynamic CFG with valid inputs that did not trigger the
buffer overflows. We then run the benchmark with CFI-LB
and triggered the buffer overflow to hijack the control flow.
All these attempts were detected and blocked by our system.

1 static PyObject *

2 sock_recvfrom_into(PySocketSockObject *s, PyObject *args, PyObject* kwds)

3 {

4 ...

5 if (recvlen == 0) {

6 recvlen = buflen;

7 }

8 // there must be a check for overflow

9 + if (buflen < recvlen) {

10 + PyBuffer_Release(&pbuf);

11 + PyErr_SetString(PyExc_ValueError,

12 + "buffer too small for requested bytes");

13 + return NULL;

14 + }

15

16 readlen = sock_recvfrom_guts(s, buf.buf, recvlen, flags, &addr);

17 ...

18 }

Fig. 7. CVE-2014-1912: the vulnerability and the patch

1 import socket

2 r, w = socket.socketpair()

3 w.send(b'\x90' * 305 + '\xc0' + '\x65' + '\x51' + '\x00')

4 r.recvfrom_into(bytearray(), 309)

Fig. 8. PoC exploit for Python CVE-2014-1912

1 000000000047caf0 <PyObject_Hash>:

2 ...

3 47cb23: 48 89 c1 mov rcx,rax

4 47cb26: 48 89 7d e0 mov QWORD PTR [rbp-0x20],rdi

5 47cb2a: 48 89 cf mov rdi,rcx

6 47cb2d: 48 89 45 d8 mov QWORD PTR [rbp-0x28],rax

7 47cb31: e8 ca 92 fa ff call 425e00 <i_cfilb3_reference_monitor>

8 47cb36: 48 8b 7d e0 mov rdi,QWORD PTR [rbp-0x20]

9 47cb3a: 48 8b 45 d8 mov rax,QWORD PTR [rbp-0x28]

10 47cb3e: ff d0 call rax

11 ...

1 if (tp->tp_hash != NULL)

2 return (*tp->tp_hash)(v);

Fig. 9. The execution of the hijacked function pointer

CVE-2014-1912: this is a heap overflow in Python-2.7.6 [10].
The root cause is the missing check of the buffer size and the
receive size in Python’s socket module, as shown in Fig. 7.
This vulnerability can be triggered by a malicious Python
program. In Python, the script memory is allocated on the
heap, sometimes adjacent to a Python object, which contains a
number of function pointers that can be hijacked by exploiting
this CVE. The PoC exploit in Fig. 8 overwrites the tp_hash
function pointer. This function pointer can be executed by the
indirect call (0x47cb3e) in Fig. 9. We took a close look at the

10

CFG for Python. This indirect call is protected by CFI-LB
with three call-site sensitivity. It contains 329 ECs with only
five valid targets (i.e., Python’s internal hash functions). CFI-
LB can detect any invalid target out of these five; and it can
further distinguish these five valid targets by the contexts. For
example, int_hash can only be called in 12 contexts.

1 - --- ftp/main.c:slurpstring() ---

2

3 406: char *sb = stringbase; <--- This is our input. (can be massive)

4 407: char *ap = argbase; <--- This buffer is 200 bytes.

5

6 458: S1:

7

8 463: case '\0':

9 464: goto OUT;

10

11 474: default:

12 475: *ap++ = *sb++; <--- Heap overflow

13 476: got_one = 1;

14 477: goto S1;

15 478: }

16 - --------------------------------

17 backtrace at overflow:

18 main()->cmdscanner()->cd()->another()->makeargv()->slurpstring()

Fig. 10. Vulnerable code for EDB-ID 15705

1 ./ftp

2 ftp> open

3 (to) b'\x90' * 745 + '\xd4' + '\x80' + '\x48' + '\x00'

4 usage: open host-name [port]

5 ftp> open

6 [iCFILB-LEVEL 1] Violation at 4796cb target to 4880d4 with context 46c804

Fig. 11. Simplified PoC for EDB-ID 15705 and the error message thrown by
CFI-LB

EDB-ID 15705: this is a heap overflow in the FTP client
of the GNU InetUtils package [19], as shown in Fig. 10.
The vulnerability can be exploited through a malicious FTP
command. Our PoC exploit uses a malicious open command
to overwrite a function pointer that can later be called by the
indirect call in cmdscanner function. CFI-LB uses one call-site
sensitivity for this indirect call. The indirect call can only target
two functions, setpeer and help. CFI-LB can detect any invalid
function addresses and impose the more restrictive contexts on
these two valid targets.

CVE-2016-2233: this is a stack-based overflow in HexChat-
2.10.0. It can be exploited by a remote IRC server. Our PoC
exploit leverages the exploits to overwrite the return address
on the stack. When the stack canary is disabled, the program
will cause a segmentation fault due to invalid memory access
by function __gconv, instead of executing the malicious code.
This is expected because SafeStack protects return addresses
by segregating them into a separate safe stack. As such, the
exploit failed to overwritten the return address, but instead
overwrote other data on the stack.
Summary: the quantitative analysis with SPEC CPU 2006 and
a complex program (NGINX) demonstrates the improvement
in the security of CFI made by the adaptive call-site sensitivity.
The experiment with the RIPE benchmark and real-world
vulnerabilities shows that CFI-LB can block control flow
hijacking attacks, hence maintaining control-flow integrity.

B. Effectiveness of Localized Concolic Execution
CFI-LB features the localized concolic execution to extend

the (incomplete) dynamic CFG with as few false positives as
possible. To evaluate this, we show the statistics to answer the
following two questions: how close the dynamic and concolic
CFGs combined is to the static CFG, and what are the main
differences between the dynamic and concolic CFGs. The
former can be answered with the set operation static-CFG \
(dyn-CFG ∪ con-CFG) 4; the latter can be answered with the
set operations dyn-CFG \ con-CFG and con-CFG \dyn-CFG. We
created the static CFG from CFL-AA, an Andersen-style alias
analysis in the official LLVM source code. Because CFL-AA is
context-insensitive, the static CFG accordingly has no contexts.
As such, we removed all the contexts in the dynamic and
concolic CFGs when calculating static-CFG \ (dyn-CFG ∪ con-
CFG). The other two set operations are calculated with two
call-site sensitivity. Table V shows the results.

We found that the union of dyn-CFG and con-CFG, after
removing the contexts, is rather close to the static-CFG, except
for h264ref (see the 5th column). In other words, most of
the run-time control flows can be directly verified by CFI-
LB without the extra offline verification. Meanwhile, our
localized concolic execution performs well in finding new
control transfers that do not exist in dyn-CFG (the 6th and
7th columns). For example, con-CFG has 308 more entries
than dyn-CFG and only misses 14 entries from it for 403.gcc.

To check the correctness of con-CFG, we randomly picked
some parts of it and manually analyzed them. Overall, we
did not find any false positives for these benchmarks (false
positives are possible as stated earlier.) Using sjeng as an
example, we found that it contains a function pointer dispatch
table, which consists of six function pointers to handle the
normal cases and another one to handle errors. Because the
inputs to generate dyn-CFG only contain valid data, dyn-CFG
can never include this target. By using the concolic execution,
we can explore all the paths of the related functions and
successfully discovered this target. We also found some false
negatives caused by the limitations of the concolic execution
in general and the specific tool we use. For example, we found
the SMT solver failed to generate the strings starting with the
‘#’ character, which would otherwise lead to three new targets.

To further test the effectiveness of this technique, we con-
ducted the experiments to compare con-CFG generated from
the small inputs to dyn-CFG generated from the large inputs.
Specifically, SPEC CPU2006 includes both a smaller test data
set and a much larger reference data set. We run our localized
concolic execution based on the execution history generated
from the test data set (called con-CFG-t), and compared con-
CFG-t to the dynamic CFG generated from the reference data
set (called dyn-CFG-r). The results are shown in Table VI.
It demonstrates that our concolic execution can discover a
significantly larger CFG from the small inputs, comparable to
the CFG generated from the much larger inputs. For example,
if we run 403.gcc on the reference data set but with the

4\ returns the elements in the first operand but not in the second operand.

11

TABLE V
Comparing static, dynamic, and concolic CFGs for the Spec CPU 2006 benchmarks. Column 2 to 4 show the total number of entries in these

CFGs, respectively. Note that number of static-CFG is not directly comparable to these of dyn-CFG and con-CFG because the latter two CFGs
have contexts (hence more entries).

Benchmark static-CFG dyn-CFG con-CFG static-CFG \(dyn-CFG’ ∪ con-CFG’) dyn-CFG \ con-CFG con-CFG \ dyn-CFG

400.perlbench 879 1374 1387 41 (4.66%) 0 (0%) 13 (0.94%)
401.bzip2 20 12 16 4 (20%) 0 (0%) 4 (25%)
403.gcc 2198 3831 4125 94 (4.28%) 14 (0.37%) 308 (7.47%)
445.gobmk 957 1882 1971 79 (8.25%) 23 (1.22%) 112 (5.68%)
456.hmmer 52 47 59 6 (11.54%) 0 (0%) 12 (20.34%)
458.sjeng 7 6 7 0 (0%) 0 (0%) 1 (14.29%)
464.h2564ref 711 262 479 206 (28.97%) 12 (4.58%) 229 (47.81%)

TABLE VI
Comparing concolic and dynamic CFGs. dyn/con-CFG-t is derived from the small test inputs; dyn/con-CFG-r is derived from the large reference

inputs. Our localized concolic execution can discover most of the control transfers in the dyn-CFG-r using only the small inputs.

Benchmark dyn-CFG-r dyn-CFG-t con-CFG-t dyn-CFG-r \ dyn-CFG-t dyn-CFG-r \ con-CFG-t Discovered

400.perlbench 1374 449 1051 925 323 (23.51%) 602
401.bzip2 12 12 16 0 0 (0%) 0
403.gcc 3831 2196 3929 1635 53 (1.38%) 1582
445.gobmk 1882 1102 1833 780 49 (2.60%) 731
456.hmmer 47 3 58 44 1 (2.13%) 43
458.sjeng 6 6 7 0 0 (0%) 0
464.h264ref 262 240 473 22 18 (6.87%) 4

CFG generated from the test data set, only 53 (1.38% of the
total control transfers in dyn-CFG-r, the 6th column) context-
sensitive control transfers need to be validated by the static
CFG. Note that the dynamic CFG from the reference data set
has 1, 635 (the 5th column) more entries than that from the
test data set; most of which are successfully discovered by our
localized concolic execution.
Summary: this evaluation demonstrated the effectiveness and
efficiency of our proposed localized concolic execution in
extending the dynamic CFG close to the static CFG, even with
a small input data set. Consequently, our multi-scope CFG can
efficiently verify most run-time control transfers online.

C. Performance Evaluation
We evaluated the overhead of CFI-LB on the Intel core-i7

6700 processor (Skylake) with a base frequency of 3.4GHz
and 16GB of memory, running the 64-bit Ubuntu 16.04.3
LTS system. We used the SPEC CPU2006 benchmarks, in-
cluding all the SPECint 2006 benchmarks and all the C/C++
benchmarks in SPECfp 2006, and the NGINX benchmark for
the evaluation. Note that a few benchmarks had no overhead
because either their code did not use indirect calls or their
indirect calls were not executed by the benchmark inputs. In
the following, we exclude three such benchmarks from the
average (Average_ex in Fig. 12). For C++ based benchmarks,
we applied CFI-LB to both the C-style indirect calls and virtual
calls. We tested the performance of CFI-LB by the following
four configurations: CFI-LB without SafeStack or TSX, with
SafeStack only, with TSX only, and with both features.
The forward edge protection of CFI-LB incurred about 2.7%

of overhead on average, with a maximum of 5% (xalancbmk).
Note that the performance overhead of CFI-LB is decided

by how frequently indirect calls are executed. For example,
even though sjeng only had one executed indirect call, that
indirect call was executed 775, 046, 817 times during the
benchmark. Our prototype relies on the SafeStack to protect
return addresses. SafeStack only incurred an addition 0.5%
of overhead on average, with a maximum of about 1.5%.
Interestingly, it had negative performance impact on some
benchmarks. This is consistent with the original system [31].

We measured the performance of CFI-LB both with and
without the TSX support. TSX-based hardware transactional
memory is used by CFI-LB to prevent race conditions against
its reference monitors. As shown in Fig. 12, the average
performance overhead introduced by TSX was about 1.4%.
We also measured the false failure rate of transactions caused
by the false sharing or cache conflicts. The failure rate was
low at about 0.002%. Therefore, the false transaction abort
was not a concern for performance.

The average performance overhead of CFI-LB with both
SafeStack and TSX was about 4.8%, with a maximum of
8.4%. Note that the overhead introduced by SafeStack and
TSX cannot be simply added together. SafeStack changes the
stack layout and the program behavior. This may subtly change
the program’s performance under TSX: TSX is enforced at
the cache line level. When the stack layout is changed by
SafeStack, the program may have a different cache profile that
further affects the overhead of TSX. For example, it seems
that adding the TSX support incurred no additional overhead
for 403.gcc but more overhead for benchmarks such as NGINX.

Other than the run-time performance, our offline analysis
process took about 4 hours for each benchmark measured
on an Intel Xeon E5-2630v2 (2.60GHz) machine with 32GB
memory. We consider this performance reasonable since the

12

 0%

 2%

 4%

 6%

 8%

 10%

perlbench

bzip2

gcc
m

cf
m

ilc
nam

d

gobm
k

dealII

soplex

povray

hm
m

er

sjeng

libquantum

h264ref

lbm
om

netpp

astar

sphinx3

xalancbm
k

N
G
IN

X

Average_all

Average_ex

 P
e
rf

o
rm

a
n
c
e
 O

v
e
rh

e
a
d w/o SafeStack or TSX

w/ SafeStack

w/ TSX

w/ SafeStack and TSX

Fig. 12. Performance overhead, Average_ex shows the average overhead excluding the three benchmarks that have no overhead.

offline analysis is conducted only once offline.
Summary: on average, CFI-LB introduced a low performance
overhead: 2.7% for the forward-edge protection and 4.8% for
the full protection.

V. Discussion
In this section, we discuss the potential improvements and

the future work for CFI-LB.
First, CFI-LB is explicitly designed to protect its reference

monitors from race conditions. Some CFI systems are implic-
itly protected from race conditions because their reference
monitors are encoded in the registers only [2]. Any CFI
systems that rely on the compiler for register allocation cannot
provide this guarantee. This includes most recent CFI systems,
which implement their instrumentation in the LLVM IR [1],
[4], [34]. Only a few CFI systems are implemented by direct
binary instrumentation [2], [12]. Even such systems require
careful vetting to ensure that they are not susceptible to race
conditions. Moreover, this approach does not work for context-
sensitive CFI systems because of x86’s limited number of
registers. We address this challenge with TSX. Note that
CFI-LB cannot use the TSX instructions inside the existing
TSX-protected code sections of the program. Such conflict is
unlikely because TSX is often used to protect short critical
sections, which typically do not contain indirect calls.
Second, the security of CFI is decided by both the average

and the largest EC sizes. Unfortunately, our evaluation shows
that call-site sensitivity may not be effective in reducing the
largest EC size. The ability to reduce the largest EC size is
decided by the program structure itself and the maximum level
of call-site sensitivity. For example, the largest indirect call
in 403.gcc is called by a recursive function. This makes it
difficult, if not impossible, for call-site sensitivity to reduce
the largest EC size. Path sensitivity is not very effective
either. For example, the largest EC size for SPEC CPU2006
benchmarks is 218 for PittyPat [18]. A follow-up work of
PittyPat significantly improves this situation [27]. In addition,
there are cases where increasing sensitivity helps but could
lead to the explosion of the number of ECs. To address that,

we could use a more powerful model of the call stack, e.g.,
a regular expression. This will allow us to support recursive
callers by combining the consecutive instances of the same
caller. We can also identify common programming patterns
that lead to this ineffectiveness and automatically transform
the program to make it more amicable to call-site sensitivity.

Third, the static CFG is constructed with the points-to
analysis, a known NP-hard problem [55]. Precise points-
to analysis algorithms often rely on context sensitivity to
improve precision; but they do not scale well for C/C++
programs. Many published precise points-to algorithms were
evaluated only with toy programs. The public availability
of these algorithms are even less common, let alone well-
maintained. After a long search, we find the best available
context-sensitive points-to algorithm at the time of writing
is the DSA algorithm, which has not been maintained for a
long time and contains known algorithmic errors [32], [33].
To temporarily relieve this situation, we propose the multi-
scope CFG and its localized concolic execution to significantly
extend the dynamic CFG. Our system can easily adopt a static
context-sensitive CFG when it becomes available.

Fourth, CFI-LB relies on offline analysis to check control
transfers within the static CFG but outside the dynamic CFGs.
An identified benign control transfer will be added to the
dynamic CFG, while a malicious one can be added to a
blacklist. This will gradually increase the scope of the dynamic
CFGs, making the offline analysis less frequent. The offline
analysis should be (mostly) automated to be useful. A simple
strategy is to black-list every abnormal control transfer that
leads to the program crash. Given the many exploit mitigation
mechanisms deploy in application, this strategy is potentially
effective. Overall, this is a complex problem that deserves its
own line of research [9]. We leave it as a future work. We
would like to mention that our localized concolic execution
makes the need for offline analysis much less burdensome –
as shown in Table VI, most benchmarks require analysis of
less than 55 control transfers.

Lastly, our localized concolic execution tries to explore
multiple paths that immediately lead to an indirect call in

13

TABLE VII
Compare some CFI systems that use hardware support

CFI Systems CCFI PathArmor PittyPat CFI-LB

Context context insensitive path sensitive path sensitive call-site sensitive

Hardware support Intel AES-NI Intel last branch record Intel processor tracing software-based, Intel TSX/CET
if available

Coverage authenticate all code pointers limited to paths before seven
sensitive syscalls

entire execution leading to the
sensitive syscalls

every indirect call/jump, rely-
ing on the shadow stack to pro-
tect returns

CFG type-based CFG on-demand, constraint-driven
context-sensitive CFG

no pre-computed CFG, using
online validation multi-scope CFGs

Kernel changes sigaction modifications to
verify code pointers

kernel module to monitor path
and intercept syscalls

kernel module to control Intel
PT and intercept syscalls no kernel changes

order to discover new targets. A complimentary strategy is
to follow the def-use chain backwards and select the function
that defines the related function pointer as the starting function.
The intuition is that programmers often conditionally assign
to the function pointer in a single function. We can explore all
the paths of this function so that the function pointer can be
assigned to other values. However, this implies that the target
indirect call is included in the captured execution history. Our
current approach does not have this constraint. In addition, the
“define” function could be too far from the “use” function for
the concolic execution to handle. We plan to combine both
strategies to further improve the concolic CFG.

VI. Related Work
In this section, we discuss the work closely related to

CFI-LB. In their seminal work, Abadi et al. introduced the
key concept of Control Flow Integrity (CFI) [2] that has
inspired a long stream of research [1], [6], [8], [14], [15], [16],
[18], [23], [36], [38], [39], [41], [50], [52], [53], [54]. The
original implementation of CFI uses a tag-based enforcement
mechanism. As such, it suffers from the imprecision caused
by equivalence classes, which is a common limitation of the
context-insensitive CFI systems. A context-insensitive CFI that
does not have this problem is HyperSafe [50], which uses a
dedicated jump table for each indirect call. However, the main
purpose of HyperSafe is to enforce the CFI for a hypervisor.
Accordingly, its performance overhead was not evaluated with
the standard benchmarks, such as SPEC CPU2006. A recent
survey by Burow et al. provides a comprehensive comparison
of the context-insensitive CFI systems [3]. Different from these
systems, CFI-LB is a context-sensitive system.
Recently, Intel has introduced numerous security features

in their processors. Many of these features are used in recent
CFI systems [4], [13], [18], [22], [24], [34], [48]. Table VII
compares some of these CFI systems. For example, CCFI
(Cryptographic CFI) leverages the hardware AES accelera-
tion to cryptographically authenticate code pointers in order
to protect them from malicious modification [34]. CCFI is
context-insensitive and uses a type-based CFG, in which an
indirect call can transfer to any address-taken functions that
have a compatible prototype. CFI systems that rely on the
hardware support often require to change the kernel, for

example, to control the hardware feature. Although CCFI does
not need the kernel privilege to access AES-NI, it still has to
change the signal handling code to authenticate the user signal
handler. Because CCFI needs to cryptographically authenticate
every code pointer, its performance overhead is rather high.
The recently announced pointer authentication on the ARM
v8.3 platform can accelerate the pointer authentication in
hardware [5]. However, there is no publicly available SoC
that implements this feature yet. CFIXX proposes the object-
type integrity to protect virtual calls in C++ programs [4].
Specifically, it stores the mapping between the object and its
type in the meta-data, and protects the meta-data with the
Intel MPX technology. CFIXX can prevent a wide variety
of vtable hijacking attacks [45]. CFI-LB can prevent most
vtable hijacking attacks because of its precise CFI policy.
Object-type integrity is a complementary policy to CFI [4].

PathArmor [48] and PittyPat [18] are two closely related
systems. They both implement the path-sensitivity CFI policy.
PathArmor relies on the Intel last branch record (LBR) to
record the most recent 16/32 branches. It then employs an
on-demand constraint-driven method to calculate a small rel-
evant part of the context-sensitive CFG and further validates
the control flow. For performance reasons, PathArmor only
validates the immediate paths before a small selected set of
sensitive syscalls. As such, PathArmor can only provide a
partial protection to the process. Meanwhile, PittyPat uses the
more powerful Intel processor tracing (PT) that can continu-
ously track a process’ control flow. Intel PT hence has higher
performance and storage overhead than LBR. To address that,
PittyPat redirects the process tracing data to a different process
and relies on another CPU core to offload the verification.
The protected process and the verifier are synchronized at
the selected syscalls, i.e., the verification is only performed at
these (ten) syscalls. However, since Intel PT provides a more
complete history, PittyPat can verify the whole execution path
leading to the syscall. As such, PittyPat has broader coverage
than PathArmor, but it reduces the usable CPU cores and
limits the number of processes it can protect simultaneously.
CFI-LB instead enforces the call-site sensitivity. Technically,
path sensitivity is more fine-grained than call-site sensitivity
because they can take individual branches into consideration.

14

CFI-LB excels at enforcing the protection for the whole
program all the time. It also has much lower overhead, given
that both PathArmor and PittyPat only enforces the protection
at the selected syscall boundary.
The CFG construction is still a mostly unsolved problem for

CFI systems. Many CFI systems use a coarse-grained CFG.
For example, some CFI systems assume that each indirect call
can legitimately transfer to any address-taken functions [20],
[25], [26], [47]. An improvement over that is to only allow
an indirect call to transfer to address-taken functions that have
compatible types [1], [34], [38]. To support multiple modules,
modular CFI allows run-time updates to the CFG in order to
protect the inter-module indirect calls [38]. The way PittyPat
verifies the control flow is interesting. It does not maintain a
CFG; it instead uses the recorded execution path to calculate
the valid run-time control transfers. This is somewhat similar
to PathArmor’s constraint-based CFG construction in that
both use the past execution history to constrain the possible
valid control transfers. CFI-LB instead uses the multi-scope
CFG that combines a context-insensitive CFG with context-
sensitive dynamic and concolic CFGs. Our experiments show
that our localized concolic execution can significantly extend
the dynamic CFG with few false positives. There are also many
systems that do not rely on the CFG, but use heuristics to
detect anomaly in the control flow. For example, kBouncer
and ROPecker [7], [40], look for anomalous control patterns
at sensitive locations.

VII. Conclusion
We have presented the design, implementation, and evalu-

ation of CFI-LB, an adaptive call-site sensitive CFI system.
CFI-LB has two unique features: adaptive call-site sensitivity
and the multi-scope CFG. The former balances the security
and the performance by allowing each indirect call to decide
its own level of sensitivity; the latter aims at improving the
security of CFI even if a precise context-sensitive CFG is
not available by using multiple CFGs and combining the
online and offline verification. In addition, CFI-LB is the
first CFI system that can explicitly guarantee the atomicity
of its reference monitors. Our evaluation shows that CFI-
LB can significantly improve the security over the traditional
context-insensitive CFI systems and incur a small, acceptable
performance overhead.

VIII. Acknowledgment
We would like to thank the anonymous reviewers for their

insightful comments that helped improve the presentation of
this paper. Zhi Wang was partially supported by National
Science Foundation (NSF) under Grant 1453020; Yajin Zhou
was partially supported by the National Natural Science Foun-
dation of China (NSFC) under Grant 61872438. Any opinions,
findings, and conclusions or recommendations expressed in
this paper are those of the authors and do not necessarily reflect
the views of NSF or NSFC.

References

[1] Niu, Ben and Tan, Gang , “Per-input Control-flow Integrity,” in Pro-
ceedings of the 22nd ACM SIGSAC Conference on Computer and
Communications Security. ACM, 2015, pp. 914–926.

[2] M. Abadi, M. Budiu, U. Erlingsson, and J. Ligatti, “Control-flow
Integrity,” in Proceedings of the 12th ACM conference on Computer
and communications security. ACM, 2005, pp. 340–353.

[3] N. Burow, S. A. Carr, J. Nash, P. Larsen, M. Franz, S. Brunthaler,
and M. Payer, “Control-Flow Integrity: Precision, Security, and
Performance,” ACM Comput. Surv., vol. 50, no. 1, pp. 16:1–16:33, Apr.
2017. [Online]. Available: http://doi.acm.org/10.1145/3054924

[4] N. Burow, D. McKee, S. A. Carr, and M. Payer, “CFIXX: Object Type
Integrity for C++,” in Proceedings of the 2018 Network and Distributed
System Security Symposium, 2018.

[5] A. Can, A. Krishnaswamy, and R. Turner, “Code Pointer Authentication
for Hardware Flow Control,” Dec. 6 2016, uS Patent 9,514,305.

[6] N. Carlini, A. Barresi, M. Payer, D. Wagner, and T. R. Gross, “Control-
Flow Bending: On the Effectiveness of Control-Flow Integrity,” in
Proceedings of the 24th USENIX Security Symposium, vol. 14, 2015,
pp. 28–38.

[7] Y. Cheng, Z. Zhou, Y. Miao, X. Ding, H. DENG et al., “ROPecker:
A Generic and Practical Approach for Defending against ROP Attack,”
2014.

[8] J. Criswell, N. Dautenhahn, and V. Adve, “KCoFI: Complete Control-
flow Integrity for Commodity Operating System Kernels,” in Security
and Privacy (SP), 2014 IEEE Symposium on. IEEE, 2014, pp. 292–307.

[9] W. Cui, M. Peinado, S. K. Cha, Y. Fratantonio, and V. P.
Kemerlis, “Retracer: Triaging crashes by reverse execution from
partial memory dumps,” in Proceedings of the 38th International
Conference on Software Engineering, ser. ICSE ’16. New York,
NY, USA: ACM, 2016, pp. 820–831. [Online]. Available: http:
//doi.acm.org/10.1145/2884781.2884844

[10] “CVE-2014-1912,” https://cve.mitre.org/cgi-bin/cvename.cgi?name=
CVE-2014-1912.

[11] T. H. Dang, P. Maniatis, and D. Wagner, “The Performance Cost of
Shadow Stacks and Stack Canaries,” in Proceedings of the 10th ACM
Symposium on Information, Computer and Communications Security,
ser. ASIA CCS ’15, 2015.

[12] L. Davi, A. Dmitrienko, M. Egele, T. Fischer, T. Holz, R. Hund,
S. Nürnberger, and A.-R. Sadeghi, “MoCFI: A Framework to Mitigate
Control-flow Attacks on Smartphones,” in NDSS, vol. 26, 2012, pp. 27–
40.

[13] L. Davi, M. Hanreich, D. Paul, A.-R. Sadeghi, P. Koeberl, D. Sulli-
van, O. Arias, and Y. Jin, “HAFIX: Hardware-assisted Flow Integrity
Extension,” in Proceedings of the 52nd Annual Design Automation
Conference. ACM, 2015, p. 74.

[14] L. Davi, P. Koeberl, and A.-R. Sadeghi, “Hardware-assisted Fine-grained
Control-flow Integrity: Towards Efficient Protection of Embedded Sys-
tems against Software Exploitation,” in Proceedings of the 51st Annual
Design Automation Conference. ACM, 2014, pp. 1–6.

[15] L. Davi and A.-R. Sadeghi, “Building Control-flow Integrity Defenses,”
in Building Secure Defenses Against Code-Reuse Attacks. Springer,
2015, pp. 27–54.

[16] L. Davi, A.-R. Sadeghi, D. Lehmann, and F. Monrose, “Stitching the
Gadgets: On the Ineffectiveness of Coarse-grained Control-flow Integrity
Protection,” in Proceedings of the 23Rd USENIX Conference on Security,
ser. SEC’14, 2014.

[17] L. De Moura and N. Bjørner, “Z3: An Efficient SMT Solver,” in
International conference on Tools and Algorithms for the Construction
and Analysis of Systems. Springer, 2008, pp. 337–340.

[18] R. Ding, C. Qian, C. Song, B. Harris, T. Kim, and W. Lee, “Efficient
Protection of Path-sensitive Control Security,” in 26th USENIX Security
Symposium (USENIX Security 17). Vancouver, BC: USENIX Associ-
ation, 2017, pp. 131–148. [Online]. Available: https://www.usenix.org/
conference/usenixsecurity17/technical-sessions/presentation/ding

[19] “EDB-ID-15705,” https://www.exploit-db.com/exploits/15705/.
[20] U. Erlingsson, M. Abadi, M. Vrable, M. Budiu, and G. C. Necula, “XFI:

Software Guards for System Address Spaces,” in Proceedings of the 7th
symposium on Operating systems design and implementation. USENIX
Association, 2006, pp. 75–88.

[21] I. Evans, F. Long, U. Otgonbaatar, H. Shrobe, M. Rinard, H. Okhravi,
and S. Sidiroglou-Douskos, “Control Jujutsu: On the Weaknesses of
Fine-grained Control-flow Integrity,” in Proceedings of the 22nd ACM

15

http://doi.acm.org/10.1145/3054924
http://doi.acm.org/10.1145/2884781.2884844
http://doi.acm.org/10.1145/2884781.2884844
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-1912
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-1912
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/ding
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/ding
https://www.exploit-db.com/exploits/15705/

SIGSAC Conference on Computer and Communications Security. ACM,
2015, pp. 901–913.

[22] X. Ge, W. Cui, and T. Jaeger, “Griffin: Guarding Control Flows Using In-
tel Processor Trace,” in Proceedings of the Twenty-Second International
Conference on Architectural Support for Programming Languages and
Operating Systems. ACM, 2017, pp. 585–598.

[23] E. Göktas, E. Athanasopoulos, H. Bos, and G. Portokalidis, “Out of
Control: Overcoming Control-flow Integrity,” in Proceedings of the 2014
IEEE Symposium on Security and Privacy, ser. SP ’14, 2014.

[24] Y. Gu, Q. Zhao, Y. Zhang, and Z. Lin, “PT-CFI: Transparent Backward-
edge Control Flow Violation Detection Using Intel Processor Trace,” in
Proceedings of the Seventh ACM on Conference on Data and Application
Security and Privacy. ACM, 2017, pp. 173–184.

[25] B. Hardekopf and C. Lin, “Semi-Sparse Flow-sensitive Pointer Analy-
sis,” in Proceedings of the 2009 ACM SIGACT-SIGPLAN Symposium on
Principles of Programming Languages, January 2009.

[26] M. Hind and A. Pioli, “Which Pointer Analysis should I Use?” in ACM
SIGSOFT Software Engineering Notes, vol. 25, no. 5. ACM, 2000, pp.
113–123.

[27] H. Hu, C. Qian, C. Yagemann, S. P. H. Chung, W. R. Harris,
T. Kim, and W. Lee, “Enforcing unique code target property for
control-flow integrity,” in Proceedings of the 2018 ACM SIGSAC
Conference on Computer and Communications Security, ser. CCS ’18.
New York, NY, USA: ACM, 2018, pp. 1470–1486. [Online]. Available:
http://doi.acm.org/10.1145/3243734.3243797

[28] Intel 64 and IA-32 Architectures Software Developerś Manual, Intel.
[29] Intel, “Control-flow Enforcement,” https://

software.intel.com/sites/default/files/managed/4d/2a/
control-flow-enforcement-technology-preview.pdf, 2018.

[30] Intel, “Intel Pin Tool,” http://intel.ly/2jc3TSy, 2018.
[31] V. Kuznetsov, L. Szekeres, M. Payer, G. Candea, R. Sekar, and

D. Song, “Code-pointer Integrity,” in 11th USENIX Symposium
on Operating Systems Design and Implementation (OSDI 14).
Broomfield, CO: USENIX Association, 2014, pp. 147–163. [Online].
Available: https://www.usenix.org/conference/osdi14/technical-sessions/
presentation/kuznetsov

[32] C. Lattner, A. Lenharth, and V. Adve, “Making Context-sensitive Points-
to Analysis with Heap Cloning Practical for the Real World,” in
Proceedings of the 28th ACM SIGPLAN Conference on Programming
Language Design and Implementation, ser. PLDI ’07, 2007.

[33] LLVM Forum, “LLVM DSA - Reproduce the Result in PLDI 07 Paper,”
http://lists.llvm.org/pipermail/llvm-dev/2015-May/085359.html, 2018.

[34] A. J. Mashtizadeh, A. Bittau, D. Boneh, and D. Mazières, “CCFI:
Cryptographically Enforced Control-flow Integrity,” in Proceedings of
the 22nd ACM SIGSAC Conference on Computer and Communications
Security. ACM, 2015, pp. 941–951.

[35] Microsoft, “The Evolution of CFI Attacks and Defenses,”
https://github.com/Microsoft/MSRC-Security-Research/tree/master/
presentations/2018_02_OffensiveCon, 2018.

[36] V. Mohan, P. Larsen, S. Brunthaler, K. W. Hamlen, and M. Franz,
“Opaque Control-flow Integrity,” in Proceedings of the 22th Network
and Distributed System Security Symposium, ser. NDSS ’15, 2015.

[37] D. Mu, A. Cuevas, L. Yang, H. Hu, X. Xing, B. Mao, and
G. Wang, “Understanding the Reproducibility of Crowd-reported
Security Vulnerabilities,” in 27th USENIX Security Symposium
(USENIX Security 18), Baltimore, MD, 2018. [Online]. Available:
https://www.usenix.org/conference/usenixsecurity18/presentation/mu

[44] “Clang SafeStack,” https://clang.llvm.org/docs/SafeStack.html.

[38] B. Niu and G. Tan, “Modular Control-flow Integrity,” ACM SIGPLAN
Notices, vol. 49, no. 6, pp. 577–587, 2014.

[39] Niu, Ben and Tan, Gang, “RockJIT: Securing Just-in-time Compilation
Using Modular Control-flow Integrity,” in Proceedings of the 2014 ACM
SIGSAC Conference on Computer and Communications Security. ACM,
2014, pp. 1317–1328.

[40] V. Pappas, M. Polychronakis, and A. D. Keromytis, “Transparent ROP
Exploit Mitigation Using Indirect Branch Tracing,” in USENIX Security
Symposium, 2013, pp. 447–462.

[41] M. Payer, A. Barresi, and T. R. Gross, “Fine-grained Control-flow
Integrity through Binary Hardening,” in International Conference on
Detection of Intrusions and Malware, and Vulnerability Assessment.
Springer, 2015, pp. 144–164.

[42] “PoC for CVE’s,” https://github.com/VulnReproduction/LinuxFlaw.
[43] Quarkslab, “Triton Symbolic Engine,” http://bit.ly/2AKOLCX, 2018.
[45] F. Schuster, T. Tendyck, C. Liebchen, L. Davi, A.-R. Sadeghi, and

T. Holz, “Counterfeit Object-oriented Programming: On the Difficulty
of Preventing Code Reuse Attacks in C++ Applications,” in Proceedings
of the 36th IEEE Symposium on Security and Privacy. IEEE, 2015.

[46] N. Stojanovski, M. Gusev, D. Gligoroski, and S. J. Knapskog, “By-
passing Data Execution Prevention on Microsoft Windows xp sp2,” in
Availability, Reliability and Security, 2007. ARES 2007. The Second
International Conference on. IEEE, 2007, pp. 1222–1226.

[47] C. Tice, T. Roeder, P. Collingbourne, S. Checkoway, Ú. Erlingsson,
L. Lozano, and G. Pike, “Enforcing Forward-edge Control-flow Integrity
in GCC & LLVM,” in USENIX Security Symposium, 2014, pp. 941–955.

[48] V. van der Veen, D. Andriesse, E. Göktaş, B. Gras, L. Sambuc,
A. Slowinska, H. Bos, and C. Giuffrida, “Practical Context-sensitive
CFI,” in Proceedings of the 22Nd ACM SIGSAC Conference on Com-
puter and Communications Security, ser. CCS ’15, 2015.

[49] C. Vulnerabilities and Exposures, “CVE List of Memory Corruption,”
https://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=memory+corruption.

[50] Z. Wang and X. Jiang, “Hypersafe: A Lightweight Approach to Provide
Lifetime Hypervisor Control-flow Integrity,” in Security and Privacy
(SP), 2010 IEEE Symposium on. IEEE, 2010, pp. 380–395.

[51] J. Wilander, N. Nikiforakis, Y. Younan, M. Kamkar, and W. Joosen,
“RIPE: Runtime Intrusion Prevention Evaluator,” in In Proceedings of
the 27th Annual Computer Security Applications Conference, ACSAC.
ACM, 2011.

[52] Y. Xia, Y. Liu, H. Chen, and B. Zang, “CFIMon: Detecting Violation
of Control-flow Integrity Using Performance Counters,” in Dependable
Systems and Networks (DSN), 2012 42nd Annual IEEE/IFIP Interna-
tional Conference on. IEEE, 2012, pp. 1–12.

[53] C. Zhang, T. Wei, Z. Chen, L. Duan, L. Szekeres, S. McCamant,
D. Song, and W. Zou, “Practical Control Flow Integrity and Ran-
domization for Binary Executables,” in Proceedings of the 2013 IEEE
Symposium on Security and Privacy, ser. SP ’13, 2013.

[54] M. Zhang and R. Sekar, “Control Flow Integrity for COTS Binaries,” in
Proceedings of the 22Nd USENIX Conference on Security, ser. SEC’13,
2013.

[55] J. Zheng, L. Williams, N. Nagappan, W. Snipes, J. P. Hudepohl, and
M. A. Vouk, “On the Value of Static Analysis for Fault Detection in
Software,” IEEE transactions on software engineering, vol. 32, no. 4,

pp. 240–253, 2006.

16

http://doi.acm.org/10.1145/3243734.3243797
https://software.intel.com/sites/default/files/managed/4d/2a/control-flow-enforcement-technology-preview.pdf
https://software.intel.com/sites/default/files/managed/4d/2a/control-flow-enforcement-technology-preview.pdf
https://software.intel.com/sites/default/files/managed/4d/2a/control-flow-enforcement-technology-preview.pdf
http://intel.ly/2jc3TSy
https://www.usenix.org/conference/osdi14/technical-sessions/presentation/kuznetsov
https://www.usenix.org/conference/osdi14/technical-sessions/presentation/kuznetsov
http://lists.llvm.org/pipermail/llvm-dev/2015-May/085359.html
https://github.com/Microsoft/MSRC-Security-Research/tree/master/presentations/2018_02_OffensiveCon
https://github.com/Microsoft/MSRC-Security-Research/tree/master/presentations/2018_02_OffensiveCon
https://www.usenix.org/conference/usenixsecurity18/presentation/mu
https://clang.llvm.org/docs/SafeStack.html
https://github.com/VulnReproduction/LinuxFlaw
http://bit.ly/2AKOLCX
https://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=memory+corruption

	Introduction
	Call-site Sensitive CFI
	Quantifying Context-Sensitive CFI
	Call-site Sensitive CFI

	System Design
	Enforcing One Call-site Sensitivity
	Adaptive Call-site Sensitivity
	Multi-scope CFG
	Localized Concolic Execution
	Prototype of CFI-LB

	Evaluation
	Security Evaluation
	Effectiveness of Localized Concolic Execution
	Performance Evaluation

	Discussion
	Related Work
	Conclusion
	Acknowledgment
	References

