
Detecting Passive Content Leaks 
and Pollution in Android 

Applications 

Yajin Zhou and Xuxian Jiang 

North Carolina State University 



2 

Apps Are Becoming Popular 
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Apps Are Managing User Data 

Messages 

Friends 

Browser 
Histories 

Bank Accounts 
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Content Providers 

 Manage access to a structured set of data 

Data 

Content  
Provider 

Android App 

Read Interface 

Write Interface 

 By default are open to all apps on the phone 
(before Android 4.2) 

Any potential security risks? 



5 

A Motivating Example 

 GO FBWidget: popular Android app with more 
than 1 million installs 
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A Motivating Example 

final class h implements Facebook.DialogListener { 
 public void onComplete(Bundle paramBundle) { 
  String token = FaceBookChooserActivity.a(this.a).getAccessToken(); 
                   ContentValues c = new ContentValues(); 
                   c.put(“accesstoken”, token); 
                   ContentResolver resolver = this.a.getApplicationContext.getContentResolver(); 
            resolver.insert(FacebookProvider.SETTING_CONTENT_URI, c); 
 } 
} 

public class FacebookProvider implements extends ContentProvider { 
 public Cursor query(Uri uri, String[] projection, String selection, 
                                            String[] selectionArgs, String sortOrder) { 
  SQLiteDatabase db = this.aq.getWritableDatabase(); 
  SQLiteQueryBuilder  query = new SQLiteQueryBuilder(); 
  q.setTables(“settings”); 
  Cursor c = q.query(db, projection, selection, selectionArgs, null, null, sortOrder); 
  … 
  return c;  
 } 
} 

get Facebook 
access token 

insert access token into 
internal database 

content provider 
implementation 

public read interface of 
content providers 

API that actually queries 
internal database 
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A Motivating Example 

 Can be exploited to leak private data 

 Access token, Facebook posts 

Automatically log into user’s 
Facebook account and make 

posts 
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Our Work 

Systematically study two vulnerabilities: 
content leaks and content pollution 

 2.0% and 1.4% of apps are susceptible, 
respectively 

 Types of information leaked 

 SMS messages, contacts, user credentials, … 

 Possible side-effects  

 Block SMS messages and phone calls 

 Download apps and prompt for installation 
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System Design 

App 
Repository 

Select 
Candidate Apps 

Determine 
Vulnerable Apps 

Classify 
Vulnerable Apps 

ContentScope 

Find 
Execution paths 

Generate 
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Confirm 
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Android 
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Find Execution Paths 

 From public interfaces of content providers to 
functions that actually operate on internal 
database 
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Find Execution Paths 

 Function call graph 

 Object reference resolution 

 Call graph discontinuity 

 
Thread.start() Thread.run() 

Handler. 
sendMessage() 

Handler. 
handleMessage() 

AsyncTask. 
execute() 

AsyncTask. 
onPreExecute() 

AsyncTask. 
doInBackground() 

AsyncTask. 
onPostExecute() 
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Generate Inputs 

 Generate control flow graph 

 Obtain constraints 

 Resolve constraints 
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Generate Inputs 

 Android specific APIs 

 UriMatcher 

If (sUriMatcher.match(uri)) 

exception 

 == 1 != 1 

uri 

What’re 
satisfied inputs? 

Call 
internalQuery() 

sUriMatcher.addURI( "com.example.app.provider", 
                                       "example_table", 1); 

content://com.example.app.provider/example_table 
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Confirm Vulnerabilities 

 Feed generated inputs into a test app 

 Invoke public interfaces of content providers 

 query(), insert(), … 

 Determine the existence of vulnerabilities 
based on return value 

 query(): Cursor object 

 insert(): URI object 
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System Implementation 

 Around 6,500 SLOCs 

 Public interfaces of content providers 

 query(), openFile() 

 insert(), update() 

 APIs that actually read or write internal 
database 

 SQLiteDatabase.query(), SQLiteDatabase.insert(), 
SQLiteQueryBuilder.query(), … 
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Evaluation 

 Dataset: 62,519 free apps 

 Sources: Google Play and ten other Android 
markets 

 Time: February 2012 

35,047  
(56.06%) 

27,472  
(43.94%) 

Google Play

Other Markets
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Overall Results 

1,279 
(2.0%)  

871 
(1.4%) 

694 
(1.1%) 

435 
398 

234 

844 

473 460 

Content Leaks Content Pollution Both

# of Vulnerable Apps

# of  Vulnerable Apps in Google Play

# of  Vulnerable Apps in Third-party Markets
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Main Types of Leaked Data 

Category # of apps Representative App # of Installs 

SMS messages 268 Pansi SMS 500,000 – 1,000,000 

Contacts 128 mOffice – Outlook sync 100,000 – 500,000 

Private information 
in IM Apps 121 Messenger With You 10,000,000 – 50,000,000 

User credentials 80 GO FB Widget 1,000,000 – 5,000,000 

Browser History 70 Dolphin Browser HD 10,000,000 – 50,000,000 

Call logs 61 Droid Call Filter 100,000 – 500,000 

Private information 
In social network apps 27 Sina Weibo 100,000 – 500,000 
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Side-effects of Content Pollution 

 Block SMS messages and phone calls: by 
manipulating security settings 

 DW Contacts 

 Download apps and prompt for installation 

 Baidu Appsearch, Qihoo Browser 
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Vulnerable Security Apps 

 Mobile Security Personal Ed.  

 Leak browser histories 

 QQPimSecure, Anguanjia 

 Leak SMS, phone call logs 

 Block SMS and phone calls 
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Possible Mitigations 

 App Developers 

 Patch their vulnerable apps 

 Platform provider (Google) 

 Change the default setting of content provider 
interface 
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Possible Mitigations 

 By Google: content providers are no longer 
exported by default on Android since 4.2 

 Developers need to explicitly change manifest file 

 Set targetSdkVersion to 17 (or higher) 

 Problems remain on old Android versions  

 The API level of 98.6% Android devices are less than 17 
on February 04, 2013 [1] 

[1] http://developer.android.com/about/dashboards/index.html 
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Possible Mitigations 

 By Google: content providers are no longer 
exported by default on Android since 4.2 

 Developers need to explicitly change manifest file 

 Set targetSdkVersion to 17 (or higher) 

 Problems remain on old Android versions  

 The API level of 98.6% Android devices are less than 17 
on February 04, 2013 [1] 

[1] http://developer.android.com/about/dashboards/index.html 

98.6% 
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Related Work 

 Smartphone privacy 

 TaintDroid [Enck et al., OSDI 10], AdRisk [Grace et al., ACM 

WiSec 12] … 

 Confused deputy 

 Woodpecker [Grace et al., NDSS 12], Permission Re-
Delegation [Felt et al., USENIX Security 11] … 

 Vulnerability detection 

 BitBlaze [Song et al., ICISS 08], KLEE [Cadar et al., USENIX 

Security 08] … 
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Conclusion 

 Systematically study two vulnerabilities: 
content leaks and content pollution 

 2.0% and 1.4% of apps are susceptible, 
respectively 

 Types of information leaked 

 SMS messages, contacts, user credentials, … 

 Possible side-effects:  

 Block SMS messages and phone calls, … 
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