
Detecting Passive Content Leaks
and Pollution in Android

Applications

Yajin Zhou and Xuxian Jiang

North Carolina State University

2

Apps Are Becoming Popular

675,000
apps

25 billion
downloads

10/2008 09/2012

initial
release

800,000
apps

~30 billion
downloads

02/2013

3

Apps Are Managing User Data

Messages

Friends

Browser
Histories

Bank Accounts

4

Content Providers

 Manage access to a structured set of data

Data

Content
Provider

Android App

Read Interface

Write Interface

 By default are open to all apps on the phone
(before Android 4.2)

Any potential security risks?

5

A Motivating Example

 GO FBWidget: popular Android app with more
than 1 million installs

6

A Motivating Example

final class h implements Facebook.DialogListener {
 public void onComplete(Bundle paramBundle) {
 String token = FaceBookChooserActivity.a(this.a).getAccessToken();
 ContentValues c = new ContentValues();
 c.put(“accesstoken”, token);
 ContentResolver resolver = this.a.getApplicationContext.getContentResolver();
 resolver.insert(FacebookProvider.SETTING_CONTENT_URI, c);
 }
}

public class FacebookProvider implements extends ContentProvider {
 public Cursor query(Uri uri, String[] projection, String selection,
 String[] selectionArgs, String sortOrder) {
 SQLiteDatabase db = this.aq.getWritableDatabase();
 SQLiteQueryBuilder query = new SQLiteQueryBuilder();
 q.setTables(“settings”);
 Cursor c = q.query(db, projection, selection, selectionArgs, null, null, sortOrder);
 …
 return c;
 }
}

get Facebook
access token

insert access token into
internal database

content provider
implementation

public read interface of
content providers

API that actually queries
internal database

7

A Motivating Example

 Can be exploited to leak private data

 Access token, Facebook posts

Automatically log into user’s
Facebook account and make

posts

8

Our Work

Systematically study two vulnerabilities:
content leaks and content pollution

 2.0% and 1.4% of apps are susceptible,
respectively

 Types of information leaked

 SMS messages, contacts, user credentials, …

 Possible side-effects

 Block SMS messages and phone calls

 Download apps and prompt for installation

9

System Design

App
Repository

Select
Candidate Apps

Determine
Vulnerable Apps

Classify
Vulnerable Apps

ContentScope

Find
Execution paths

Generate
Inputs

Confirm
Vulnerabilities

Android
apps

Select
Candidate Apps

Determine
Vulnerable Apps

Find
Execution Paths

Generate
Inputs

Confirm
Vulnerabilities

Classify
Vulnerable Apps

Report Report

10

Find Execution Paths

 From public interfaces of content providers to
functions that actually operate on internal
database

11

Find Execution Paths

 Function call graph

 Object reference resolution

 Call graph discontinuity

Thread.start() Thread.run()

Handler.
sendMessage()

Handler.
handleMessage()

AsyncTask.
execute()

AsyncTask.
onPreExecute()

AsyncTask.
doInBackground()

AsyncTask.
onPostExecute()

12

Generate Inputs

 Generate control flow graph

 Obtain constraints

 Resolve constraints

13

Generate Inputs

 Android specific APIs

 UriMatcher

If (sUriMatcher.match(uri))

exception

 == 1 != 1

uri

What’re
satisfied inputs?

Call
internalQuery()

sUriMatcher.addURI("com.example.app.provider",
 "example_table", 1);

content://com.example.app.provider/example_table

14

Confirm Vulnerabilities

 Feed generated inputs into a test app

 Invoke public interfaces of content providers

 query(), insert(), …

 Determine the existence of vulnerabilities
based on return value

 query(): Cursor object

 insert(): URI object

15

System Implementation

 Around 6,500 SLOCs

 Public interfaces of content providers

 query(), openFile()

 insert(), update()

 APIs that actually read or write internal
database

 SQLiteDatabase.query(), SQLiteDatabase.insert(),
SQLiteQueryBuilder.query(), …

16

Evaluation

 Dataset: 62,519 free apps

 Sources: Google Play and ten other Android
markets

 Time: February 2012

35,047
(56.06%)

27,472
(43.94%)

Google Play

Other Markets

17

Overall Results

1,279
(2.0%)

871
(1.4%)

694
(1.1%)

435
398

234

844

473 460

Content Leaks Content Pollution Both

of Vulnerable Apps

of Vulnerable Apps in Google Play

of Vulnerable Apps in Third-party Markets

18

Main Types of Leaked Data

Category # of apps Representative App # of Installs

SMS messages 268 Pansi SMS 500,000 – 1,000,000

Contacts 128 mOffice – Outlook sync 100,000 – 500,000

Private information
in IM Apps 121 Messenger With You 10,000,000 – 50,000,000

User credentials 80 GO FB Widget 1,000,000 – 5,000,000

Browser History 70 Dolphin Browser HD 10,000,000 – 50,000,000

Call logs 61 Droid Call Filter 100,000 – 500,000

Private information
In social network apps 27 Sina Weibo 100,000 – 500,000

19

Side-effects of Content Pollution

 Block SMS messages and phone calls: by
manipulating security settings

 DW Contacts

 Download apps and prompt for installation

 Baidu Appsearch, Qihoo Browser

20

Vulnerable Security Apps

 Mobile Security Personal Ed.

 Leak browser histories

 QQPimSecure, Anguanjia

 Leak SMS, phone call logs

 Block SMS and phone calls

21

Possible Mitigations

 App Developers

 Patch their vulnerable apps

 Platform provider (Google)

 Change the default setting of content provider
interface

22

Possible Mitigations

 By Google: content providers are no longer
exported by default on Android since 4.2

 Developers need to explicitly change manifest file

 Set targetSdkVersion to 17 (or higher)

 Problems remain on old Android versions

 The API level of 98.6% Android devices are less than 17
on February 04, 2013 [1]

[1] http://developer.android.com/about/dashboards/index.html

23

Possible Mitigations

 By Google: content providers are no longer
exported by default on Android since 4.2

 Developers need to explicitly change manifest file

 Set targetSdkVersion to 17 (or higher)

 Problems remain on old Android versions

 The API level of 98.6% Android devices are less than 17
on February 04, 2013 [1]

[1] http://developer.android.com/about/dashboards/index.html

98.6%

24

Related Work

 Smartphone privacy

 TaintDroid [Enck et al., OSDI 10], AdRisk [Grace et al., ACM

WiSec 12] …

 Confused deputy

 Woodpecker [Grace et al., NDSS 12], Permission Re-
Delegation [Felt et al., USENIX Security 11] …

 Vulnerability detection

 BitBlaze [Song et al., ICISS 08], KLEE [Cadar et al., USENIX

Security 08] …

25

Conclusion

 Systematically study two vulnerabilities:
content leaks and content pollution

 2.0% and 1.4% of apps are susceptible,
respectively

 Types of information leaked

 SMS messages, contacts, user credentials, …

 Possible side-effects:

 Block SMS messages and phone calls, …

26

Q&A

Yajin Zhou
http://yajin.org

(yajin_zhou@ncsu.edu)

