
AirBag: Boosting Smartphone Resistance to

Malware Infection

Chiachih Wu†, Yajin Zhou†, Kunal Patel†, Zhenkai Liang∗, Xuxian Jiang†

†Department of Computer Science ∗School of Computing

North Carolina State University National University of Singapore

{cwu10, yajin zhou, kmpatel4, xjiang4}@ncsu.edu liangzk@comp.nus.edu.sg

Abstract—Recent years have experienced explosive growth
of smartphone sales. Inevitably, the rise in the popularity of
smartphones also makes them an attractive target for attacks.
In light of these threats, current mobile platform providers have
developed various server-side vetting processes to block malicious
applications (“apps”). While helpful, they are still far from ideal
in achieving their goals. To make matters worse, the presence
of alternative (less-regulated) mobile marketplaces also opens up
new attack vectors, which necessitate client-side solutions (e.g.,
mobile anti-virus software) to run on mobile devices. However,
existing client-side solutions still exhibit limitations in their
capability or deployability.

In this paper, we present AirBag, a lightweight OS-level virtu-
alization approach to enhance the popular Android platform and
boost our defense capability against mobile malware infection.
Assuming a trusted smartphone OS kernel and the fact that
untrusted apps will be eventually installed onto users’ phones,
AirBag is designed to isolate and prevent them from infecting our
normal systems (e.g., corrupting the phone firmware) or stealthily
leaking private information. More specifically, by dynamically
creating an isolated runtime environment with its own dedicated
namespace and virtualized system resources, AirBag not only
allows for transparent execution of untrusted apps, but also
effectively mediates their access to various system resources
or phone functionalities (e.g., SMSs or phone calls). We have
implemented a proof-of-concept prototype on three representative
mobile devices, i.e., Google Nexus One, Nexus 7, and Samsung
Galaxy S III. The evaluation results with a number of untrusted
apps, including real-world mobile malware, demonstrate its
practicality and effectiveness.

I. INTRODUCTION

Smartphone sales have recently experienced an explosive
growth. Canalys [23] reports that the year of 2011 marks as
the first time in history that smartphones have outsold per-
sonal computers. Their incredible popularity can be partially
attributed to their improved functionality and convenience for
end users. Especially, they are no longer basic devices for
making phone calls and receiving text messages, but powerful

platforms, with comparable computing and communication ca-
pabilities to commodity PCs, for GPS navigation, web surfing,
and even online businesses. Among competing smartphone
platforms, Google’s Android apparently gains the dominance
with more than half of all smartphones shipped to end users
running Android [25].

One key appealing factor of smartphone platforms is the
availability of a wide range of feature-rich mobile applications
(“apps”). For instance, by September 2012, Google Play [9]
and Apple App Store [6] are home to more than 650, 000

and 700, 000 apps, respectively. The centralized model of
mobile marketplaces not only greatly helps developers to
publish their mobile apps, but streamlines the process for
mobile users to browse, download, and install apps, hence
boosting smartphone popularity. With the increased number
of smartphone users, malware authors are also attracted to
the opportunity to widely spread mobile malware. As an
example, the DroidDream malware infected more than 260, 000

devices within 48 hours, before Google took action to remove
them from the official Android Market (now Google Play)
[1]. Considering these threats, mobile platform providers have
developed server-side vetting processes to detect or remove
malicious apps from centralized marketplaces in the first place.
With varying levels of success, many malicious apps are
identified and removed from marketplaces. However, they are
far from ideal as malware authors could still find new ways to
penetrate current marketplaces and upload malicious apps.

From another perspective, a number of client-side solutions
have been developed. As a mobile platform provider, Google
provides the Android security architecture which sandboxes
apps based on their permissions and runs them as separate user
identities. However, they are still insufficient as malicious apps
may masquerade as legitimate apps but request (and abuse)
additional permissions [34] to access protected smartphone
functionality or private information. In the face of these
threats, traditional software security vendors have developed
corresponding mobile anti-malware software. With the inherent
dependence on known malware signatures, they are largely
ineffective against new ones. To mitigate them, Aurasium
[55] is proposed to enforce certain access control policies
on untrusted apps. However, it requires repackaging apps to
enable the enforcement and the enforcement is still ineffective
against attacks launched from native code. L4Android [43]
and Cells [19] take a virtualization-based approach to allow
for multiple virtual smartphones to run side-by-side on one
single physical device. However, they are mainly designed to

Permission to freely reproduce all or part of this paper for noncommercial
purposes is granted provided that copies bear this notice and the full citation
on the first page. Reproduction for commercial purposes is strictly prohibited
without the prior written consent of the Internet Society, the first-named author
(for reproduction of an entire paper only), and the author’s employer if the
paper was prepared within the scope of employment.
NDSS ’14, 23-26 February 2014, San Diego, CA, USA
Copyright 2014 Internet Society, ISBN 1-891562-35-5
http://dx.doi.org/doi-info-to-be-provided-later

embrace the new “bring-your-own-device” (BYOD) paradigm
and the offered isolation is too coarse-grained at the virtual
smartphone boundary. For mobile users, it is desirable to have
a lightweight solution that can strictly confine untrusted apps
(including ones with native code or root exploits) at the app
boundary.

In this paper, we present the design, implementation,
and evaluation of AirBag, a new client-side solution that
leverages lightweight OS-level virtualization to significantly
boost our defense capability against mobile malware infec-
tion. Specifically, as a client-side solution, AirBag assumes
a trusted smartphone OS kernel and considers users may
unintentionally download and install malicious apps (that
somehow manage to penetrate the vetting processes of mobile
marketplace curators). To strictly isolate and prevent them from
compromising normal phone functionalities such as SMSs or
phone calls, AirBag dynamically instantiates an isolated virtual
environment to ensure their transparent “normal” execution,
and further mediate their access to various system resources
or phone functionalities. Therefore, any damages that may be
possibly inflicted by untrusted apps will be strictly isolated
within the virtualized environment.

To provide seamless user experience, AirBag is designed to
run behind-the-scenes and transparently support mobile apps
when they are downloaded, installed, or executed. Specifically,
when an user installs (or sideloads) an app, the app will be
automatically isolated within an AirBag environment. Inside
the AirBag, the app is prohibited to interact with legitimate
apps and system daemons running outside. To accommodate its
normal functionality, AirBag provides a (decoupled) App Iso-
lation Runtime (AIR) whose purpose is to separate it from the
native Android runtime, but still allow the isolated app to run
as it is installed normally. Further, users can choose to run AIR
in three different modes: (1) “incognito” is the default mode
that will completely remove personally-identifying information
about the phone (e.g., IMEI) or users (e.g., gmail accounts) to
avoid unnecessary information leakage; (2) “profiling” mode
will log detailed execution traces (in terms of invoked An-
droid APIs or functionalities) for subsequent offline analysis;
(3) “normal” mode will essentially execute the app without
further instrumentation. For other normal phone features (e.g.,
networking and telephony), the AIR proxies related API calls
to the external native Android runtime through an authenticated
communication channel.1 This brings us new opportunities to
apply fine-grained access control on the isolated app (e.g.,
prompting users for outgoing SMSs or phone calls) without
repackaging the app itself or affecting the native Android
runtime. Besides, the default mode (“incognito”) of AirBag
allows users to “test” an app in the isolated runtime before
running it in the native runtime. Throughout the “test” phase,
users can check if the app has any abnormal or malicious
behavior with the fine-grained access control logs provided
by AirBag. This prevents end users from installing malicious
apps in the first place. On the other hand, users can also
use the “profiling” mode to gather detailed information of the
identified malicious apps (in “incognito” mode) for analysis.

To develop a robust AirBag mechanism and strictly confine
untrusted apps, a common wisdom is to encapsulate their

1A network connection which relies on the authentication protocols to
provide secure communication.

execution in a separate virtual machine (VM) that is isolated
from the rest of the system. However, challenges exist to create
a lightweight virtual machine for commodity mobile devices.
In particular, current mobile devices are typically resource
constrained with limited CPU, memory, and battery capabil-
ity. And most off-the-shelf mobile devices do not have the
processors with hardware virtualization support, which makes
traditional virtualization approaches less desirable [52]. As our
solution, AirBag takes a lightweight OS-level virtualization
approach but still obtains comparable isolation capability.
Specifically, by sharing one single OS kernel instance, our
approach scales better than traditional hypervisors and incurs
minimal performance overhead. Also, by providing a sepa-
rate namespace and virtualizing necessary system resources,
AirBag still achieves comparable isolation.

We have implemented a proof-of-concept prototype on
three mobile devices, Google Nexus One, Nexus 7, and Sam-
sung Galaxy S III, running Linux kernel 2.6.35.7, 3.1.10, and
3.0.8, respectively. To ensure seamless but confined execution
of untrusted apps, our prototype builds the app isolation
runtime or AIR by leveraging the Android Open Source Project
(AOSP 4.1.1) to export the same interface while in the mean-
time allowing users to choose different running modes. Specif-
ically, the “incognito” mode prevents personally-identifying
information from being leaked while the “profiling” mode logs
the untrusted app behavior, which we find helpful to analyze
malicious apps (Section IV) in a live phone setting. Security
analysis as well as the evaluation with more than a dozen
of real-world mobile malware demonstrate that our system is
effective and practical. The performance measurement with a
number of benchmark programs further shows that our system
introduces very low performance overhead.

The rest of the paper is organized as follows: In Section
II, we present the overall system design, followed by its
implementation in Section III. We then evaluate our prototype
and report measurement results in Section IV. After that,
we further examine possible limitations and explore future
improvements in Section V. Finally, we describe related work
in Section VI and conclude in Section VII.

II. SYSTEM DESIGN

A. Design Goals and Threat Model

Our system is designed to meet three requirements. First,
AirBag should reliably confine untrusted apps such that any
damage they may incur would be isolated without affecting
the native phone environment. The challenges for realizing
this goal come from the fundamental openness design behind
Android, which implies that any app is allowed to communi-
cate with other apps or system daemons running in the phone
(through built-in IPC mechanisms). In other words, once a
malicious app is installed, it has a wide attack surface to launch
the attack. The presence of privilege escalation or capability
leak vulnerabilities [37] further complicates the confinement
requirement.

Second, AirBag should achieve safe and seamless user
experience throughout the lifespan of untrusted apps, from
their installation to removal. Specifically, from the user’s
perspective, AirBag should avoid incurring additional burden
on users. Correspondingly, the challenge to meet this goal

2

App
Trusted

App
Trusted

App
Trusted

App
Untrusted

Context−Aware Device Virtualization
Kernel

User

Linux OS Kernel (w/ Android Extention) Linux OS Kernel (w/ Android Extention)

.....

Native Android Runtime

App
Trusted.....

Native Android Runtime Decoupled AIR

Untrusted
App

AirBag

(a) Current Android Architecture (b) AirBag−Enhanced Android Architecture

Fig. 1. An Overview of AirBag to Confine Untrusted Apps

is to transparently instantiate AirBag’s app isolation runtime
when an untrusted app is being installed and seamlessly adjust
different runtime environments when the untrusted app is being
launched or terminated.

Third, because AirBag is deployed in resource-constrained
mobile devices, it should remain lightweight and introduce
minimal performance overhead. In addition, AirBag should
be generically portable to a range of mobile devices without
relying on special hardware or features (that may be limited
to certain phone models).

Threat Model and System Assumption We assume
the following adversary model while designing AirBag: Users
will download and install third-party untrusted apps. These
apps may attempt to exploit vulnerabilities, especially those
in privileged system daemons such as Zygote. By doing so,
they could cause damages by either gaining unauthorized
access to various system resources or abusing certain phone
functionalities in a way not permitted by the user or not known
to the user.

Meanwhile, we assume a trusted smartphone OS kernel,
including our lightweight OS extension to support isolated
namespace and virtualized system resources. As a client-side
solution, AirBag relies on this assumption to establish neces-
sary trusted computing base (TCB). Also, such assumption is
shared by other OS-level virtualization research efforts [43],
[19]. With that, we consider the threat of corrupting OS kernels
falls outside the scope of this work.

B. Enabling Techniques

In Figure 1, we show the overview of AirBag to confine
untrusted apps and its comparison with traditional Android-
based systems. The confinement is mainly achieved from
three key techniques: decoupled app isolation runtime (AIR),
namespace/filesystem isolation, and context-aware device vir-
tualization.

1) Decoupled App Isolation Runtime (AIR): Due to the
openness design of Android, all apps share the same Android
runtime and consequently any app is allowed to communicate
with other apps on the phone. As mentioned earlier, from the
security perspective, this exposes a wide attack surface. In
AirBag, to minimize the attack surface and avoid affecting the
original Android runtime, we choose to decouple the untrusted
app execution from it. A separate app isolation runtime that

allows apps to run on it and has (almost) no interaction with
the original Android runtime is instantiated for untrusted app
execution.

There are several benefits behind such a design: First,
by providing a consistent Android abstract layer that will be
invoked by third-party Android apps, AIR effectively ensures
proper execution of untrusted apps without impacting the
original Android runtime. Second, by design, AIR does not
need to be trusted as it might be potentially compromised
by untrusted apps. Third, a separate app isolation runtime
also allows for customization to support different running
modes (Section II-C). This is necessary as AIR mainly consists
of essential Android framework classes and other service
daemons that are tasked to manage various phone resources
(e.g., device ID) or features (e.g., sensors). As a result, they
likely access private or sensitive information that could be of
concern when being exposed to untrusted apps.

2) Namespace/Filesystem Isolation: With a separate An-
droid runtime to host untrusted apps, AirBag also provides
a different namespace and filesystem to further restrict and
isolate the capabilities of processes running inside. Because
of namespace and filesystem isolation, an untrusted app inside
AirBag is not able to “see” and interact with other processes
(e.g., legitimate apps and system daemons) running outside.
In fact, all processes running inside have their own view of
running PIDs, which is completely different from external
processes. In addition, to proactively contain possible damages,
AirBag has its own filesystem different from the normal
system. For storage efficiency, we extensively leverage unionfs
[48] to compose AirBag’s filesystem and isolate modifications
from untrusted apps.

To elaborate, when an Android system is loaded, a number
of service processes or daemons (e.g., vold, binder and
servicemanager) are created. Inside AirBag, we similarly
launch the same subset of processes but group them in their
own cgroup [24]. By doing so, they are prevented from
observing and interacting with processes in another group (i.e.,
processes in the original native Android system). The cgroup

concept greatly facilitates AirBag management. Specifically,
the set of processes inside AirBag is typically suspended
until one untrusted app is being installed or launched. The
newly installed untrusted app will automatically become a
member of this cgroup. As a result, we can easily suspend the
whole cgroup when no untrusted app is active to minimize the
footprint or reduce the performance and power consumption.

3

Note that cgroup is provided by the OS kernel and is assumed
to be trusted.

3) Context-Aware Device Virtualization: The presence of a
separate AIR and namespace in AirBag unavoidably creates
contentions for underlying system resources, even though
AirBag delineates a boundary and by default disallows any
interaction from inside to outside and vice versa. To resolve
the contention, there is a need to multiplex various system
resources. In our design, we develop a lightweight OS-level
extension to mediate and multiplex the accesses from native
and AirBag runtimes.

As an example, suppose two apps need to update the
screen at the same time. Traditionally, a single service dae-
mon SurfaceFlinger is in charge of synthesizing data from
different sources (including these two apps) and generating
the final output to be rendered on the device screen. However,
with AirBag, these two apps run in two different runtimes
and they will not share the same SurfaceFlinger service.
Instead, AirBag has its own SurfaceFlinger service which
will independently update the screen.

Our solution is to virtualize hardware devices in a context-
aware manner. Specifically, our lightweight OS extension
adds necessary multiplexing and demultiplexing mechanisms
in place when the underlying hardware devices are being
accessed. Also, our extension keeps track of the current
“active” Android runtime (or namespace) and always allows
the active runtime to access the hardware resources. Notice
that an Android runtime is active if an app on it holds the
focus, i.e., the user is currently interacting with the app. To
maintain the same user experience, we disallow an user to
simultaneously interact with two apps in different runtimes.
As a result, in any particular moment, there exists at most one
active runtime. Meanwhile, to gracefully handle contentious
access from inactive runtime, we take different strategies base
on the nature of relevant hardware resources. For example, for
touch-screen and buttons, any press/release event will always
be delivered to the active runtime only. For screen update, as
the framebuffer device driver performs actual DMA operations
from a memory segment to the LCD controller hardware, we
accordingly prepare two separate memory segments such that
each environment can independently render different output
without interfering each other. The framebuffer driver can then
choose the active memory segment to perform DMA and thus
have an actual access to the LCD controller hardware.

C. Additional Capabilities

Beside the above key techniques, we also developed ad-
ditional capabilities to facilitate the confinement and improve
user experience.

1) Incognito/Profiling Modes: The decoupled AIR to host
untrusted apps provide unique opportunities for its customiza-
tion. Specifically, to prevent private information disclosure,
we introduce the incognito mode that essentially instruments
the AIR to exclude any sensitive data such as IMEI num-
ber, phone number, and contacts. For example, the device’s
IMEI number can be normally retrieved by apps through the
services provided by the Android framework. When entering
the incognito mode, such services are configured to return
faked IMEI number to the calling app. Therefore, the isolated

app transparently proceeds with fake data without additional
risks. Also, AirBag prepares a separate root filesystem that
allows for convenient “restore to default” to undo damages
from untrusted apps. In addition, we also provide profiling
mode that essentially records the execution trace of untrusted
apps. The trace is mainly collected in terms of Android-specific
logcat, which turns out to be very helpful for malware analysis
(Section IV).

2) User Confirmation for Sensitive Operations: The de-
coupled AIR also provides interesting opportunities to further
limit the capabilities of isolated apps. For example, a malicious
app may attempt to stealthily send SMS text messages to
certain premium-rate numbers or record your phone conver-
sation. When such an app runs inside AirBag, the access to
related phone features (e.g., radio, audio, and camera) will
immediately trigger user attention for approval. In other words,
the stealthy behavior from these apps will now be brought to
user attention and the user also has the option to disallow
it. It is interesting to notice that the latest Android release,
i.e., Jellybean 4.2, introduces a built-in security feature called
premium SMS confirmation [2] to avoid malware to rack up
phone bills. While achieving similar goals, AirBag is different
in restricting the access to certain phone features outside
the AIR environment, thus providing stronger robustness than
any inside solutions (as the internal built-in feature can be
potentially compromised by untrusted apps for circumvention).

3) Seamless Integration: To achieve seamless user experi-
ence, AirBag introduces minimal user interaction when an app
is being installed or launched. Specifically, when an untrusted
app is being installed (or sideloaded), AirBag will prompt
user with a (default) option to install it inside AirBag. If
chosen, AirBag essentially notifies its own PackageInstaller

to start the installation.2 Note that for an app downloaded
from Internet, the Android DownloadManager will store it in
a specific directory located in microSD. In our prototype,
we choose to export this directory read-only to AirBag so
that its PackageInstaller can access it for installation. For
improved user experience, AirBag will be installed as the
default PackageInstaller. Inside AirBag, we have a daemon
that listens to the command from it to kick off internal app
installation. In other words, the isolated apps are physically
installed in the AirBag instead of the original Android runtime.
Moreover, for any app being installed inside AirBag, AirBag
will automatically create an app stub that bears the same icon
from the original app. (To indicate the fact that it is actually
inside AirBag, we will attach a lock sign to the icon.) When
the app stub is invoked, AirBag will be notified to seamlessly
launch the actual app such that the user would feel just like
invoking a normal app (without noticing the fact it is actually
running inside AirBag). By doing so, the AIR becomes active
and the original Android runtime goes to inactive. Once the
user chooses to terminate the app, the original Android runtime
is resumed back to active.

III. IMPLEMENTATION

We have implemented a proof-of-concept AirBag proto-
type on three different mobile devices, i.e., Google Nexus

2If not chosen, the normal installation procedure will be triggered without
AirBag protection.

4

One, Nexus 7, and Samsung Galaxy S III, running Linux
kernel 2.6.35.7, 3.1.10, and 3.0.8 respectively. Our prototype is
portable without relying on any specialized hardware support.
In the following, we present in detail about our prototype. For
simplicity, unless explicitly mentioned, we will use Google
Nexus One as the reference platform.

A. Namespace/Filesystem Isolation

Our system confines untrusted apps in a separate names-
pace and filesystem. In our prototype, we leverage and extend
the namespace isolation feature of cgroups [24] in mainstream
Linux kernels. At the high level, our prototype instantiates a
new namespace and then starts from the very first process (i.e.,
airbag_init) inside AirBag. The airbag_init process will
then bootstrap the entire AIR. Specifically, the new namespace
of AirBag is created by cloning a new process with a few
specific flags: CLONE_NEWNS, CLONE_NEWPID, CLONE_NEWIPC,

CLONE_NEWUTS, and CLONE_NEWNET. Further, right before switch-
ing the control to the airbag_init program, we initialize
a separate root filesystem for the newly clone’d process
(and its decedent processes) by invoking pivot_root in the
new root directory that contains essential AIR files. We then
prepare procfs and sysfs filesystems inside AirBag so that
subsequent processes inside AirBag can properly interact with
the underlying Linux kernel. After that, we yield the control
by actually executing the airbag_init program that then kicks
off the entire AIR, including various service daemons (e.g.,
SurfaceFlinger and system_server). These service daemons
as well as essential Android framework classes collectively
allow untrusted apps to execute transparently when they are
dispatched to the AIR.

With a new AirBag-specific namespace, all processes
running inside cannot observe and interact with processes
running outside. However, some features (mainly for im-
proved user experience) may require inter-namespace com-
munication. Specifically, when installing an untrusted app,
our PackageInstaller needs to notify AirBag for seamless
installation. To achieve that, we virtualize a network device
[17] inside AirBag and connect it to a pre-allocated bridge
interface on the native Android system. By building such
an internal channel for “inter-namespace” communication, we
can naturally enable networking and telephony support inside
AirBag.

By instantiating two different namespaces on the same
kernel, our prototype needs to keep track of the current
active namespace, which is needed to enable context-aware
device virtualization (Section III-B). Specifically, we need to
export the related namespace information to corresponding
OS components (e.g., framebuffer/GPU drivers) such that they
can properly route or handle hardware device accesses from
different namespaces. For instance, when a user-level process
requests to update the framebuffer, we need to update the
respective memory blocks associated with its namespace in
OS kernel. Fortunately, when a process is clone’d with the
CLONE_NEWNS flag, an instance of struct nsproxy would be
allocated in Linux kernel to store the information such as
utsname and filesystem layout of the new namespace. Given
that all processes belong to the same namespace share the same
nsproxy data structure, our current prototype simply uses it
as the namespace identifier. When a process accesses system

TABLE I. SUPPORTED ANDROID HARDWARE DEVICES IN AIRBAG

Hardware Device Description

Audio Audio Playback and Capture

Framebuffer Display Output

GPU Graphics Processor

Input Touchscreen and Buttons

IPC Binder IPC Framework

Networking WiFi Network Interface

pmem Physical Memory Allocator

Power Power Management (Suspend/Resume)

RTC Real Time Clock

Sensors Temperature, Accelerometer, GPS

Telephony Cellular Radio (GSM, CDMA)

resources (e.g., via ioctl), we consult the nsproxy pointer of
its task_struct via the current pointer and use it to guide
proper access to virtualized system resources. For bookkeeping
purpose, we maintain an internal mapping table which records
the related nsproxy pointer for each namespace. In our pro-
totype, we find it sufficient to support two namespaces, one
for the native Android runtime and another for AirBag. The
corresponding entry is dynamically created when the respective
first process (i.e., init or airbag_init) is launched.

B. Context-Aware Device Virtualization

Our prototype permits contentious accesses from the two
running namespaces. To accommodate that, AirBag effectively
multiplexes their accesses to various system resources in a way
transparent to user-level apps (so that normal user experience
will not be compromised). In Table I, we show the list of
virtualized hardware devices supported in Airbag. Due to page
limit, we will explain the six representative hardware devices
in more details.

1) Framebuffer/GPU: In AirBag, one of the most important
devices for virtualization is the device screen, which involves
the respective framebuffer and GPU. Specifically, in Android,
all the visual content to be shown by running apps are
synthesized by the screen updater (SurfaceFlinger) to the
framebuffer memory, which is allocated from the OS kernel but
mapped to userspace. Any update will trigger the framebuffer
driver to issue DMA operations and display the synthesized
image to the device screen. Since we have only one device
screen and there exist two screen updaters from two different
namespaces, we need to regulate which one will gain actual
access to the screen.

For isolation purposes, our prototype allocates a second
framebuffer memory exclusively for the AIR runtime so that
each updater can update its own framebuffer without affecting
each other. But the underlying hardware driver will only deliver
the framebuffer from the active namespace to the screen. In our
prototype, since the framebuffer memory is mapped into the
GPU’s private page table and the page table can be dynamically
updated at runtime, we choose to only activate the framebuffer
memory in GPU from the active runtime.

Our solution works well in all three experimented mobile
devices. However, the prototype on Nexus One deserves addi-
tional discussions. To efficiently manage and allocate physical
memory for GPU, the Android support on Nexus One has a
physical memory allocator called pmem. The user-level screen
updater will request physical memory from the /dev/pmem

device. In order for the GPU and the upper-layer screen
updater to render on the screen, a 32MB contiguous physical

5

pmem

pmem’

render

image

screen updater’

screen updater
update

update

GPU

image

render

time−sharing

memory’

framebuffer

framebuffer
memory

framebuffer

driver

active/inactive

DMA

Native Runtime

AirBag Runtime

Fig. 2. Framebuffer Virtualization in AirBag (Nexus One)

memory block has been reserved for /dev/pmem. With two
instantiated runtimes, an intuitive solution will be to double
the memory reservation and dynamically allocate the first
half for the original Android runtime and the second half
for AIR. In fact, we indeed implemented this approach but
painfully realized that there also exist lots of other meta
information associated with /dev/pmem, which also need to
be decoupled for namespace awareness. For portability, we
aim to avoid changing the internal logic. We then devise
another solution by creating a separate /dev/pmem device for
each namespace (while still doubling the memory reservation).
From the upper-layer runtime perspective, it is still accessing
the same /dev/pmem device. But in our OS extension, we
dynamically map the device file to /dev/pmem_native and
/dev/pmem_airbag respectively to maintain transparency and
consistency inside the original pmem driver as well as upper-
layer screen updaters. In Figure 2, we summarize the inter-
action between the screen updaters, decoupled pmem device,
GPU, and framebuffer drivers on our Nexus One prototype.

2) Input Devices: After creating a distinct framebuffer for
each namespace, our next step is to appropriately deliver events
from various input devices (e.g., touchscreen, buttons, and
trackball) to the right namespace. Interestingly, Linux kernel
has designed a generic layer, i.e., evdev (event device), which
connects various input device drivers to upper-layered software
components. The presence of such layer makes our prototype
relatively straightforward. Specifically, the Android runtime (or
its service daemons) will listen to input events (e.g., touch-
screen and trackball) by registering itself as a client represented
as evdev_client in OS kernel. When the underlying driver is
notified with a pending input event from hardware (e.g. a tap
on the touchscreen), the event is delivered to all the registered
clients. Therefore, upon the input event registration, we will
record its namespace into the evdev_client data structure.
When an input event occurs, similar to the framebuffer driver,
we deliver it only to the registered clients from the active
namespace. In other words, all other clients from inactive
namespace will not be notified about the event.

3) IPC: After handling basic input and (screen) output
devices, we find they are still insufficient to properly set
up the AIR environment. It turns out that the problem is
due to the custom IPC mechanism in Android. Specifically,
unlike the traditional Linux IPC that is already isolated by
different namespaces (or cgroups), a custom IPC driver named
binder is developed in Android. With the binder driver, a
special daemon servicemanager will register itself as the
binder context manager during the loading process of Android.
After that, various service providers will register themselves
(via addService) so that other service users can look up and ask
for their services (via getService). Note that all these operations
are performed by passing IPC messages through /dev/binder.

Telephony
Daemon

Telephony ServiceTelephony Service

Telephony
Daemon

AirBag

Internet

Socket

Unix Domain

Socket

multiplexing

Vendor Library

Hardware

Fig. 3. Telephony Virtualization in AirBag

To virtualize /dev/binder, we create a separate context
manager for AIR so that all subsequent services registration
or lookup will be performed independently within AirBag. In
our prototype, we have similarly created an array of context
managers indexed by respective namespace. With that, both
native runtime and AIR have their own servicemanager dae-
mons registering as the context managers that handle follow-
up addService/getService operations independently, such that
all inter-app communications (e.g., intents) are fully supported
within AirBag. Also, notice that binder is the first system re-
source the Android runtime acquires, we can also conveniently
consider the moment when the device file /dev/binder is being
opened as the indication that a new namespace needs to be
created.

4) Telephony: The telephony support in Android largely re-
lies on a service daemon, rild, which loads vendor-proprietary
library (e.g., libhtc_ril.so) for controlling the underlying
hardware. In particular, a Java class com.android.internal

.telephony.RIL of Android runtime communicates with rild

via an Unix domain socket (created by rild) to proxy various
telephony services. To support necessary telephony functions
inside AIR, as we do not have access to vendor-specific source
code, we choose to multiplex the hardware access at the user
level rild. Specifically, in our prototype, we create a TCP
socket along with the normal Unix domain socket in rild that
runs in the native runtime. The new TCP socket is used to
accept incoming connections from the com.android.internal

.telephony.RIL inside AirBag (Figure 3). In other words,
the rild inside AirBag is disabled (by adjusting the internal
startup script init.rc). By design, our current prototype allows
for outgoing phone calls from AirBag, but any incoming phone
calls will be automatically answered in the native runtime.3

5) Audio: For the audio device, we find the support
on Nexus One straightforward as it exports a device file

3If the native runtime is currently not active when an incoming phone call
is received, we will automatically activate it to achieve the same level of user
experience.

6

/dev/q6dsp that allows for concurrent accesses. However, the
support on Nexus 7 and Galaxy S III is rather complicated.
Specifically, both devices adopt the standard ALSA-based
audio driver [18] in OS kernel, which allows only one active
audio stream. In other words, if one namespace is currently
accessing the device, the other will not be able to access
it. Specifically, the process trying to access the audio device
would be put into a wait queue when the device is in use.

In our prototype, we take a similar approach with the
/dev/pmem device. Specifically, we add a separate virtual audio
stream for each namespace so that it will maintain exclusive
use within respective namespace. The virtual audio stream
from the active namespace will be bound to the hardware audio
stream at runtime. For example, in ALSA, an ioctl operation,
i.e., SNDRV_PCM_IOCTL_WRITEI_FRAMES is used to send audio
data to the device. Such an ioctl from the inactive runtime
would silently return without actually sending data to the
hardware. But for other ioctls to retrieve or update hardware
states such as SNDRV_PCM_IOCTL_SYNC_PTR, we maintain its
own latest cache of the states, which will then be applied
to hardware when its namespace becomes active. When an
inactive namespace becomes active, it is allowed to preempt
the use of the audio device.

6) Power Management: The presence of two runtimes also
complicates the power management. For example, when an
untrusted game app runs inside AirBag for a while, the native
runtime may time out and attempt to perform early suspend
on the entire phone, which includes turning off the screen. To
avoid causing inconvenience, our current prototype chooses to
disable any power-related operations from AirBag. In other
words, we only allow the native runtime to turn off or dim the
screen. In order to prevent the native runtime to sleep while
AirBag is active, it will require a wakelock [13] in the native
runtime before activating the AIR. The AIR still maintains its
own timeout for screen turn-off. But instead of actually turning
off the screen, it will release the wakelock. Also, when the app
inside AirBag terminates, it will then release the wakelock and
yield the control back to the native runtime.

C. Decoupled App Isolation Runtime

With a separate app isolation runtime, we have the op-
portunity to customize it to better confine untrusted apps
without affecting the original native runtime. As mentioned
earlier, we build the AIR by customizing Android Open Source
Project (AOSP 4.1.1) to export the same interface while
in the meantime allowing users to choose different running
modes. In particular, the AIR’s root directory is relocated
with the pivot_root system call (so that any write operation
issued in AirBag would not corrupt the original files in the
firmware). Specifically, we build a unionfs [48] that copy-
on-writes all updates in a file-based ext4 disk image and
uses a base filesystem as a squashfs image for read-only
operations. Such an organization enables us to readily provide
the “restore to default” feature, which essentially removes
the dirty file-based ext4 disk image. Also, our system elim-
inates all potential personally-identifying information from
AIR for the “incognito” mode. For instance, the Android API
TelephonyManager.getDeviceId() has been instrumented to
return a faked IMEI number.

The layered design of AOSP also provides the opportu-
nity to profile app behavior. For example, while analyzing
a malware, we usually leverage logcat, to record various
Android API calls we are interested in. We note that the
collected log entries are pushed down from the namespace in
which the untrusted app runs, which does lead to the concern
of trustworthiness of collected log. However, from another
perspective, the actual dumped message is maintained by the
kernel-level log driver, which is assumed to be trusted (Section
II). Moreover, the profiling mode will turn on the systemtap

support [16] to record syscalls from AirBag (with confined
apps) to external SD card for in-depth analysis.

In addition, our system also instruments the AIR to prevent
untrusted apps from performing stealthy actions (e.g., sending
SMSs to premium-rate numbers). In particular, by modify-
ing the Android API in com.android.internal.telephony

.RIL class, the untrusted app running inside AirBag mode
is prevented from performing any stealthy telephony action.
Further, thanks to the cgroup abstraction, we could white-
list the devices for AirBag access. Specifically, before starting
the AirBag namespace, we can write each allowed device file
name with the corresponding permission to the cgroups virtual
filesystem (e.g. /cgroup/airbag/devices.list). After that, all
the access to the device files not listed in the white-list would
be automatically blocked.

To maintain transparency, our scheme is seamlessly in-
tegrated with the native system without breaking user expe-
rience. Specifically, when the system boots up, the AirBag
environment is automatically initiated and then suspended.
Its suspension will be removed in two scenarios when the
user either (1) dispatches an app to it for isolation or (2)
launches a previously isolated app. In the first case, our
customized PackageInstaller automatically guides the in-
stallation procedure by simply adding an “isolate” button
(Figure 4(a)). For each isolated app, our system will register
an “app stub” in the native Android runtime. In Figure 4(b),
we show the example app stub for an isolated game app
(com.creativemobi.DragRacing). For comparison, we also
install the same game app inside the native runtime. The
difference in their icons is the addition of a lock sign on the
icon associated with the isolated app. When the user clicks
the app stub, AirBag is activated to execute the isolated app,
which transparently marks native runtime inactive and thus
yields underlying hardware accesses to AirBag. When the app
terminates, AirBag would make itself inactive and seamlessly
bring the native runtime up-front.

D. Lessons Learned

In the process of developing our early prototype on Nexus
7, we encounter an interesting problem that a benchmark
program running inside the AirBag always scores one fourth of
normal system, which indicates that AirBag only utilizes one
of the four available CPU cores. After further investigation,
it turns out that Nexus 7 has a CPU hotplug mechanism that
can dynamically put CPU cores online or offline based on
the workload of the whole system. However, due to a bug
[8] in Linux kernel 3.1.10, the CPU online events are not
properly delivered to AirBag, which then fails to scale up the
computation power when AirBag is fully loaded but the native
runtime is idle. We then backport the patches from mainline

7

TABLE II. EFFECTIVENESS OF AIRBAG IN SUCCESSFULLY BLOCKING 20 REPRESENTATIVE ANDROID MALWARE

Malware Family

Malicious Behavior

Retrieve IMEI Retrieve Phone Number Send SMS Intercept SMS Record Audio Damage Firmware

(w/ root exploits)

BeanBot
√ √ √ √

DKFBootKit
√ √ √

DroidKungFu
√ √ √

DroidLive
√ √ √

Fjcon
√ √

Geinimi
√ √ √ √

GingerMaster
√ √

GoldDream
√ √ √ √

HippoSMS
√ √

NickiBot
√ √ √ √

RogueLemon
√ √

RogueSPPush
√ √

RootSmart
√ √

SMSSpoof
√

SndApps
√

Spitmo
√ √

TGLoader
√ √

YZHCSMS
√ √ √

Zitmo
√

Zsone
√ √

(a) Customized Package Installer

App Stub

Original App

(b) App Stub

Fig. 4. Seamless Integration of AirBag

Linux kernel [10] to have AirBag informed about the status of
available CPU cores whenever a CPU core is online or offline.

Another issue we encountered in our prototype is related
to the low-memory killer, which will be waked up to sacrifice
certain processes when the system is under high memory pres-
sure. As our prototype supports two concurrent namespaces,
the unknowing low-memory killer may pick up a process from
the active namespace as victim for termination, which greatly
affects user experience. Therefore, our prototype adjusts the
algorithm and makes it in favor of choosing processes from
inactive runtime as victims to maintain responsive user expe-
rience.

IV. EVALUATION

In this section, we present the evaluation results by first
showing the effectiveness of AirBag with various mobile
malware. We then measure the impact on performance as well
as power consumption and memory usage.

(a) Faked phone number is being accessed

(b) Faked phone number is being uploaded

Fig. 5. GoldDream Analysis

A. Effectiveness

To evaluate the effectiveness, we selected 20 Android
malware that present a good coverage of state-of-the-art mobile
malware in the wild. In Table II, we show the list and their
malicious behavior which is manually triggered. Specifically,
AirBag is able to successfully isolate these malicious apps
and prevent them from performing the malicious operations
in either Android framework level or OS kernel level. For
example, the way AirBag detects and prevents NickiBot from
recording audio is done by hooking the corresponding ioctls
(e.g., SNDRV_PCM_IOCTL_READI_FRAMES) of the ALSA-based
audio driver [18] in OS kernel while the relocation of the AIR’s
root directory and the usage of unionfs (Section III-C) enable
us to prevent firmware damages. We emphasize that AirBag
in all three supported mobile devices is able to achieve the
same results.4 In the following, we present details of three
representative experiments, to demonstrate the values from
incognito mode, profiling mode, and flexible user confirmation
for sensitive operations, respectively.

4The exceptional case is the Nexus 7 that is a tablet and does not have
necessary telephony support. However, it does not affect AirBag’s effectiveness
in isolating these apps.

8

a .exe

unlink("/system/lib/libd1.so")

open("/data/buildarm/bin/a.exe", . . .) = 3

open("/system/lib/libd1.so", . . .) = 4

read(3 , 0xbe8a82cc , 4096)

write(4, "\177ELF\1\1\1", 4096)

.. .

<un t i l EOF>

close(3); close(4)

unlink("/system/bin/rm") = 0

open("/system/lib/libd1.so", . . .) = 3

open("/system/bin/rm", . . .) = 4

read(3 , 0xbe8a82cc , 4096)

write(4, "\177ELF\1\1\1", 4096)

.. .

<un t i l EOF>

close(3); close(4)

(a) Payload Execution

rm /system/bin/mount

(or other compromised files)

exit(0)

 exit without any

 unlink call

rm /system/bin/logcat

(or other not compromised files)

access("/system/xbin/rm", F_OK)

= -2 (ENOENT)

 Try /system/xbin/rm

execve(/system/bin/toolbox rm

/system/bin/logcat)

 /system/xbin/rm not found

use /system/bin/toolbox

unlink("/system/bin/logcat")

 toolbox removes file

(b) /system/bin/rm Execution

Fig. 6. DKFBootKit Analysis

1) GoldDream Experiment: This malware [4] infected An-
droid systems by hiding in popular game apps. It spies on
SMS messages received by users, monitors incoming/outgoing
phone calls, and then stealthily uploads them as well as
device information to a remote server without user’s awareness.
Specifically, by registering a receiver for various system events
(e.g., when a SMS message is received), GoldDream launches a
background service without user’s knowledge to monitor and
upload private information.

With AirBag, this malware is automatically dispatched to
run inside the isolated AIR, instead of the native runtime. Also,
the spying activities are effectively blocked as various system-
wide events are by default isolated from the native runtime to
AIR. In Figure 5, we show how the incognito mode is helpful
to prevent real phone information from being leaked by a
GoldDream-infected game app com.rainbw.Fish. In this experi-
ment, we capture incoming/outgoing network traffic of AirBag
with tcpdump when the malware runs. From the dumped log,
we observed the collected IMEI number and phone number
were being uploaded in an HTTP message to a remote server.
Figure 5(a) shows the recorded malware behavior of retrieving
the phone number (faked to be 0123456789 in our prototype).
Figure 5(b) highlights the collected (fake) phone number being
reported back to a remote server.

2) DKFBootKit Experiment: The previous experiment effec-
tively blocks malware’s spying behavior and prevents private
information from being leaked. In this experiment, we further
demonstrate how AirBag can prevent the firmware from being
manipulated by malware. In this case, we experimented with
DKFBootKit [14], an Android malware that infects the boot
sequence of Android (not the bootloader) and replaces a few
system utilities such as ifconfig, rm, and mount under the
system partition.

With AirBag, DKFBootKit will not be able to cause any
damage to our system. First, the native filesystem is completely
isolated from the AIR on which the DKFBootKit runs. Second,
the changes inflicted by DKFBootKit, while visible inside
AirBag, are automatically copy-on-written to a separate file.
With that, we can not only conveniently analyze the contam-
ination from the malware (Section III-C), but also apply “re-
store to default” feature to undo the changes. Moreover, with
profiling mode, we collected syscalls from AirBag including

Help

History

Benchmarks

Download

(a) A screenshot of HippoSMS-
infected video browser

(b) A pop-up alert on background
SMS behavior

Fig. 7. HippoSMS Analysis

TABLE III. BENCHMARKS USED IN OUR EVALUATION

Benchmark Name Version Workload Type

AnTuTu Benchmark [5] 2.8.3 Combination

BrowserMark [7] 2.0 CPU/IO

NenaMark2 [11] 2.3 GPU

Neocore [12] 1.9.35 GPU

SunSpider [15] 0.9.1 CPU/IO

confined processes to monitor the detailed infection sequence.
From the infection sequence, we notice that DKFBootKit will
release at runtime a payload file named a.exe, which when
executed will copy it to /system/lib/libd1.so and further
replace a few other files, such as rm and mount (Figure
6(a)). It turns out the replacement of rm is to protect various
malware files. In Figure 6(b), we report the internal logic
of the replaced rm, which basically checks arguments and
avoids removing infected files. (For other files, the compro-
mised rm proceeds normally by invoking /system/xbin/rm or
/system/bin/toolbox.)

3) HippoSMS Experiment: In this experiment, we present
the capability of exposing stealthy malware behavior and how
users can dynamically block them. Specifically, we run an
Android malware HippoSMS [3] inside AirBag. As the name
indicates, this particular malware sends text messages to a
premium-rate number that incurs additional phone charges.
Notice that the only interface to access the telephony hardware
is the rild daemon running in the native runtime. And any
telephony-related operation inside AirBag will be tunneled
out to native runtime. The user will then have the option to
either allow or disallow it. By doing so, we can effectively
expose any background behavior that is often go unnoticed in
a normal system (without AirBag). In Figure 7(a), we show
a screenshot of a HippoSMS-infected video browser that is
involved in background SMS behavior. The background SMS-
sending behavior is intercepted and reported to user in a pop-up
window – Figure 7(b). The user then has the option to permit
or deny it.

B. Performance Impact

To evaluate AirBag’s impact on performance, we have
performed benchmark-based measurements on three supported

9

 0

 20

 40

 60

 80

 100

Neocore SunSpider BrowserMark

Normalized Nexus One Results (%)

NenaMark2 SunSpider BrowserMark

Normalized Nexus 7 Results (%)

NenaMark2 SunSpider BrowserMark

Normalized Galaxy S3 Results (%)

Baseline

Busy−NA

Busy−Idle

Idle−Busy

Fig. 8. Performance Measurement of AirBag on Google Nexus One, Nexus 7, and Samsung Galaxy S III

 0

 20

 40

 60

 80

 100

RAM cpuint cpufp 2D 3D

Normalized Nexus 7 Results (%)

Baseline
Busy−NA
Busy−Idle
Idle−Busy

Fig. 9. AnTuTu Measurement Results

devices – with and without AirBag. Table III shows the list of
benchmarks used in our measurement.

These benchmark programs are designed to measure var-
ious aspects of system performance. For each benchmark
program run, we have measured the performance in four
different settings: (1) “Baseline” means the results obtained
from a stock mobile device without AirBag support; (2) “Busy-
NA” means the results from a mobile device with our OS kernel
extension for AirBag but without activating the AirBag; (3)
“Busy-Idle” means results from an AirBag-enhanced system
by running the benchmark program in the native runtime
while keeping AirBag idle; and (4) “Idle-Busy” means results
from an AirBag-enhanced system by running the benchmark
program inside the AirBag while keeping the native runtime
idle. All the performance results are normalized with the
“Baseline” system to expose possible overhead introduced
by AirBag. Figure 8 summarizes the measurement results.
Overall, our benchmark experiments show that AirBag incurs
minimal impact on system performance (with around 2.5%) in
both GPU-intensive workloads (Neocore and NenaMark2) and
CPU/IO-intensive workloads (SunSpider and BrowserMark).
We also run AnTuTu [5], a comprehensive benchmark that
reported similar small performance overhead (with around
2% – Figure 9). We point out that our experiments so far
are conducted by entering the default incognito mode. When
we turn the profiling mode on, the evaluation with Neocore
benchmark indicates that our system introduces additional 10%
overhead. We are not concerned as the profiling mode is only
turned on when performing a forensics-style investigation of
an untrusted app.

C. Power Consumption and Memory Usage

Beside the performance overhead, we also evaluate the
impact of AirBag on battery use. With two concurrent names-
paces, our system likely incurs additional battery drains. In
our measurement, we perform two sets of experiments. In the
first set, we start from a fully-charged Nexus 7 device, wait
for 24 hours without running any workload, and then check
its battery level. The stock system reports 91%, and AirBag-
enhanced system shows 89%, indicating 2% more battery use.

In the second set, we also start from a fully-charged Nexus
7 device, wait for 24 hours while keeping playing an audio
file, and then check its battery level. The stock system reports
66%, and AirBag-enhanced system shows 63%, indicating 3%

more battery use.

Finally, we also measure the memory footprint of AirBag.
Specifically, we examine the percentage of in-use memory
(by reading /proc/meminfo) of the Nexus 7 by repeating the
previous two sets of experiments. Instead of waiting for 24
hours, we collect our measurement results in 4 hours. The
results from the first set of experiments indicate that our system
increases the percentage of in-use memory from 59.31% to
60.87%, an addition of 1.56%. In the second set of experiments
(with repeated playing of an audio file), the percentage of
in-use memory is increased from 60.25% to 63.70%. The
additional memory consumption is due to the reserved memory
blocks in OS kernel (e.g., for second framebuffer).

V. DISCUSSION

In this section, we re-visit our system design and imple-
mentation for possible improvements. First, the current usage
model of AirBag is to isolate untrusted apps when they are
being installed. While it achieves our design goals, it can
still be improved with a unique capability to dynamically
migrate apps between native and AirBag-confined runtime
environments. For example, users may want to try the new
features of newly released apps in the AirBag without affecting
the native environment but “move” it to the native runtime
environment when the app is considered safe and stable. On the
other hand, when an app is reported to have malicious behavior
(e.g., sending text messages in the background), users can still
use the app by limiting its capabilities within the AirBag.
Obviously, one solution will be simply uninstalling the app in
one runtime and then re-install it in another runtime. However,
it will lose all internal states accumulated from previous
installation. A better solution might lively migrate it from one
to another. This is possible as both runtime environments share
the same trusted OS kernel, though in different namespaces.
Possible challenges however may include handling dependent
libraries that may be inconsistent in different runtimes as well
as other currently interacting apps in the previous namespace.

Second, to confine untrusted app execution, our prototype
disallows confined apps to communicate with other legitimate
apps and service daemons running on the native runtime and
vice versa. As a result, various system events are isolated
at the AirBag boundary. In other words, when there is an
incoming SMS or phone call on the native runtime, such an
event will not be propagated to the AIR runtime, which will
affect certain functionality of untrusted apps. Also, automatic
updates on AirBag-confined apps may also break because of

10

the current AirBag confinement. While an intuitive solution is
to allow these events to cross the AirBag boundary, it may
however break the isolation AirBag is designed to enforce.
From another perspective, we are motivated to explore a
hybrid approach, which might be ideal in selectively white-
listing certain events to pass through (so that we can support
legitimate feature needs such as automatic updates) without
unnecessarily compromising AirBag isolation. On the other
hand, if AirBag is configured to deny all permissions, our
system could be considered to be replaced by a customized
Android system. However, with our system, users can still run
apps normally in the native runtime on the same mobile device
which cannot be achieved by customized Android systems.

Third, our current prototype is still limited in supporting
one single AirBag instance and multiple untrusted apps will
need to run within the same instance. This leads to problems
when all apps are installed as untrusted. In particular, AirBag
does not provide inter-app isolation within itself. Naturally,
we can improve the scalability of AirBag by dynamically
provisioning multiple AirBag instances with one for each
untrusted app. It does raise challenging requirements for
more efficient and lightweight AIRs. Note that our AirBag
filesystem already made use of copy-on-write to keep all
the updates in a separate data file, which should be scalable
to multiple AirBag instances. However, context-aware device
virtualization requires additional memory to be reserved (e.g.,
for smooth framebuffer support – Section III-B). It remains an
interesting challenge and we plan to explore possible solutions
in our future work (e.g., by leveraging hardware virtualization
support in latest ARM processors).

Fourth, as an OS-level kernel extension, our approach
requires updating the smartphone OS image for the enhanced
protection against mobile malware infection. While this may
be an obstacle for its deployment, we argue that our system
does not require deep modifications in smartphone OS kernel.
In fact, our kernel patch has less than 2K lines of source code
and most of them are related to generic Linux drivers, not tied
to specific hardware devices in different smartphone models.
Furthermore, we can improve the portability of our system by
implementing a standalone loadable kernel module that can be
conveniently downloaded and installed.

Fifth, for simplicity, our current prototype does not provide
the same runtime environment as the original one. Because
of that, a malicious app can possibly detect the existence of
AirBag and avoid launching their malicious behaviors. In fact,
as an OS-level virtualization solution, our system shares with
other virtualization approaches [43], [19], [35], [40], [49] by
possibly exposing virtualization-specific artifacts or footprints.
Note that with the capability of arbitrarily customizing the
isolated runtime environment (AIR), we are able to further
improve the fidelity of AirBag runtime and make it harder to
be fingerprinted. However, this situation could lead to another
round of “arms race.” From another perspective, if a mobile
malware attempts to avoid launching its attacks in a virtualized
environment, our system does achieve the intended purpose by
resisting or deterring its infection.

Last but not least, with a decoupled app isolation runtime
to transparently support untrusted apps, AirBag opens up new
opportunities that are not previously possible. For example,
our current profiling mode basically collects logcat output

as well as various syscalls from AirBag. However, it does
not need to be limited in basic log collection. For example,
recent development on virtual machine introspection [35],
[40], [29], [36], [56] can be applied in AirBag to achieve
better introspection and monitoring capabilities. Moreover, it
also provides better avenues to integrate with current mobile
anti-virus software so that they can reliably monitor runtime
behavior without being limited in only statically scanning
untrusted apps.

VI. RELATED WORK

In this section, we categorize related work into different
research areas and compare our system with them.

Server-side protection The first category of related work
include systems that are designed to improve the walled garden
model in detecting and pruning questionable apps (including
malicious ones) from centralized mobile marketplaces. For
example, Google introduces the bouncer service in February,
2012. Besides smartphone vendors, researchers also endeavor
to develop various systems to expose potential security risks
from untrusted apps. PiOS [30] statically analyzes mobile
apps to detect possible leaks of sensitive information; Enck
et al. [32] studies free apps from the official Google Play
with the goal of understanding broader security characteristics
of existing apps. Our system is different by proposing a
complementary client-side solution to protect mobile devices
from being infected by mobile malware.

Client-side protection The second category aims to
develop mitigation solutions on mobile devices. For example,
mobile anti-malware software scan the apps on the devices
based on known malware signatures, which limit their capabil-
ity in detecting zero-day malware. MoCFI [27] provides a CFI
enforcement framework to prohibit runtime and control-flow
attacks for Apple iOS. TaintDroid [31] extends the Android
framework to monitor the information flow of privacy-sensitive
data. MockDroid [21], AppFence [38], Kantola et al. [42],
Airmid [44], Apex [45], and CleanOS [51] also rely on exten-
sions on Android framework to better control apps’ access to
potential sensitive resources. Aurasium [55] takes a different
approach by repackaging untrusted apps and then enforcing
certain access control policies at runtime. With varying levels
of successes, they share a common assumption of a trustworthy
Android framework, which unfortunately may not be the case
for advanced attacks (that could directly compromise privi-
leged system daemons such as init or zygote). In contrast,
our system assumes that the Android framework inside AirBag
could be compromised (by untrusted apps) but the damages
are still contained in AirBag to prevent the native runtime
environment being affected.

From another perspective, a number of systems have
been proposed to extend the Android permission system. For
example, Kirin [33] analyzes apps at install time to block
apps with a dangerous combination of permissions. Saint [47]
enforces policies in both install time and run time to govern
the assignment as well as the usage of permissions. Stowaway
[34] identifies the apps which request more permissions than
necessary. In comparison, our system is different in not directly
dealing with Android permissions. Instead, we aim to mitigate
the risks by proposing a separate runtime that is isolated and
enforced through a lightweight OS-level extension.

11

Virtualization The third category of related work includes
recent efforts to develop or adopt various virtualization solu-
tions which can strengthen the security properties of mobile
platforms [53]. Starting from the approaches based on Type-
I hypervisors (e.g., OKL4 Microvisor [46], L4Android [43],
and Xen on ARM [39]), they may have smaller TCB but
require significant efforts to support new devices and cannot
readily leverage commodity OS kernels to support hardware
devices. In a similar vein, researchers have also applied tradi-
tional Type-II hypervisor approaches on mobile devices (e.g.,
VMware’s MVP [20] and KVM/ARM [26]). Compared to
Type-I hypervisors, Type-II hypervisors might take advantage
of commodity OS kernels to support various hardware devices.
However, it still needs to run multiple instances of guest OS
kernels, which inevitably increase memory footprint and power
consumption. Also, the world switching operation causes ad-
ditional performance degradation, which affects the scalability
in resource-constrained mobile device environments.

Beside traditional Type-I and Type-II hypervisors, OS-level
virtualization approaches are also being applied to mobile
devices. For example, Cells [19] introduces a foreground
/background virtual phones usage model and proposes a
lightweight OS-level virtualization to multiplex phone hard-
ware across multiple virtual phones. Our system differs from
Cells in two important aspects: First, as mentioned earlier,
Cells aims to embrace the emerging “bring-your-own-device”
(BYOD) paradigm by supporting multiple virtual phone in-
stances in one hardware device. Each virtual phone instance
is treated equally and the isolation is achieved at the coarse-
grained virtual phone boundary. AirBag instead is an app-
centric solution that aims to maintain a single phone usage
model and the same user experience while enforcing reliable
isolation of untrusted apps. Second, to support multiple virtual
phones, Cells needs to maintain an always-on root namespace
for their management and hardware device virtualization. In
comparison, AirBag is integrated with the native runtime for
seamless user experience without such a root namespace. At
the conceptual level, the presence of a root namespace is
similar to the management domain in Type-I Xen hypervisor,
which could greatly affect the portability on new phone mod-
els. Being a part of native system, our system can be readily
ported to new devices with stock firmware.5

In addition, researchers also explore user-level solutions to
provide separate mobile runtime environments. For example,
TrustDroid [22] enhances the Android framework to provide
domain-level isolation that confines the unauthorized data
access and cross-domain communications. Recent Android
release (Jellybean 4.2) extends the Android framework to
add multi-user support. Such a user-level solution requires
a trustworthy framework that is often the target for advance
attacks. Moreover, these solutions require deep modifications
on the Android framework. In comparison, AirBag adds a
lightweight OS-level extension to confine cross-namespace
communications without affecting the native Android frame-
work, achieving backward and forward compatibility.

Virtualization-based security The last category of the
related work includes a long stream of research projects to

5Our prototyping experience confirms that AirBag can be readily ported to
a new phone model. In fact, the very first prototype on Google Nexus One is
ported to Nexus 7 and Samsung Galaxy S III each within one week!

improve host security with virtualization: [28], [40], [41], [50],
[54]. For example, Ether [28] transparently traces malware
with the help of hardware virtualization extensions. Lockdown
[54] divides the runtime environment into trusted and untrusted
with a lightweight hypervisor. These systems benefit from a
layered architecture design as well as the strong isolation guar-
antee provided by underlying virtualization. With a decoupled
runtime environment to transparently confine user-level apps,
AirBag can be naturally combined with the above approaches
for better protection of Android-based mobile devices.

VII. CONCLUSION

We have presented the design, implementation and eval-
uation of AirBag, a client-side solution to significantly boost
Android-based smartphone capability to defend against mobile
malware. By instantiating a separate app isolation runtime
that is decoupled from native runtime and enforced through
lightweight OS-level virtualization, our system not only allows
for transparent execution of untrusted apps, but also effectively
prevents them from leaking personal information or damaging
the native system. We have implemented a proof-of-concept
prototype that seamlessly supports three representative mobile
devices, i.e., Google Nexus One, Nexus 7, and Samsung
Galaxy S III. The evaluation results with 20 representative
Android malware successfully demonstrate its practicality and
effectiveness. Also, the performance measurement with a num-
ber of benchmark programs shows that our system incurs low
performance overhead.

ACKNOWLEDGMENT

We would like to thank the anonymous reviewers for
their comments that greatly helped improve the presentation
of this paper. This work was supported in part by the US
National Science Foundation (NSF) under Grants 0855297,
0855036, 0910767, and 0952640. Any opinions, findings, and
conclusions or recommendations expressed in this material are
those of the authors and do not necessarily reflect the views
of the NSF.

REFERENCES

[1] “260,000 Android users infected with malware,” http:
//www.infosecurity-magazine.com/view/16526/260000-android-users-
infected-with-malware/.

[2] “Android 4.2 potential security features unveiled: SELinux,
VPN Lockdown and Premium SMS Confirmation,” http:
//www.androidauthority.com/android-4-2-potential-security-features-
unveiled-selinux-vpn-lockdown-premium-sms-confirmation-123785/.

[3] “Android Malware Genome Project,” http://www.malgenomeproject.
org/.

[4] “Android.Golddream|Symantec,” http://www.symantec.com/security
response/writeup.jsp?docid=2011-070608-4139-99.

[5] “AnTuTu Benchmark,” http://www.antutulabs.com.

[6] “App Store,” http://www.apple.com/iphone/from-the-app-store/.

[7] “BrowserMark,” http://browsermark.rightware.com.

[8] “Bug 714271,” https://bugzilla.redhat.com/show bug.cgi?id=714271.

[9] “Google Play,” http://play.google.com/.

[10] “linux/kernel/git/torvalds/linux.git,” http://git.kernel.org/?p=linux/
kernel/git/torvalds/linux.git.

[11] “NenaMark2,” http://nena.se/nenamark/view?version=2/.

[12] “Neocore,” https://play.google.com/store/apps/details?id=com.
qualcomm.qx.neocore.

[13] “PM: Implement autosleep and ”wake locks”, take 3,” http://lwn.net/
Articles/493924/.

12

[14] “Security Alert: New Android Malware DKFBootKit Moves To-
wards The First Android BootKit,” http://www.csc.ncsu.edu/faculty/
jiang/DKFBootKit/.

[15] “SunSpider JavaScript Benchmark,” http://www.webkit.org/perf/
sunspider/sunspider.html.

[16] “SystemTap,” http://sourceware.org/systemtap/.

[17] “Virtual ethernet device (tunnel),” http://lwn.net/Articles/232688/.

[18] “Advanced Linux Sound Architecture (ALSA) project homepage,” http:
//www.alsa-project.org/main/index.php/Main Page.

[19] J. Andrus, C. Dall, A. V. Hof, O. Laadan, and J. Nieh, “Cells: A Virtual
Mobile Smartphone Architecture,” in Proceedings of the Twenty-Third

ACM Symposium on Operating Systems Principles, 2011.

[20] K. Barr, P. Bungale, S. Deasy, V. Gyuris, P. Hung, C. Newell, H. Tuch,
and B. Zoppis, “The VMware mobile virtualization platform: is that a
hypervisor in your pocket?” SIGOPS Oper. Syst. Rev., vol. 44, no. 4,
2010.

[21] A. R. Beresford, A. Rice, N. Skehin, and R. Sohan, “MockDroid:
Trading Privacy for Application Functionality on Smartphones,” in
Proceedings of the 12th International Workshop on Mobile Computing

System and Applications, 2011.

[22] S. Bugiel, L. Davi, A. Dmitrienko, S. Heuser, A.-R. Sadeghi, and
B. Shastry, “Practical and Lightweight Domain Isolation on Android,”
in Proceedings of the 1st ACM workshop on Security and privacy in

smartphones and mobile devices, 2011.

[23] “Smart phones overtake client PCs in 2011,” http://www.canalys.com/
newsroom/smart-phones-overtake-client-pcs-2011.

[24] “CGROUPS,” http://www.kernel.org/doc/Documentation/cgroups/
cgroups.txt.

[25] “comScore Reports December 2012 U.S. Smartphone Subscriber
Market Share,” http://www.comscore.com/Insights/Press Releases/
2013/2/comScore Reports December 2012 U.S. Smartphone
Subscriber Market Share.

[26] C. Dall and J. Nieh, “KVM for ARM,” in Proceedings of the Ottawa
Linux Symposium, 2010.

[27] L. Davi, A. Dmitrienko, M. Egele, T. Fischer, T. Holz, R. Hund,
S. Nurnberger, and A.-R. Sadeghi, “MoCFI: A Framework to Mitigate
Control-Flow Attacks on Smartphones,” in Proceedings of the 19th

Annual Symposium on Network and Distributed System Security, 2012.

[28] A. Dinaburg, P. Royal, M. Sharif, and W. Lee, “Ether: Malware Analysis
via Hardware Virtualization Extensions,” in Proceedings of the 15th
ACM Conference on Computer and Communications Security, 2008.

[29] B. Dolan-Gavitt, T. Leek, M. Zhivich, J. Giffin, and W. Lee, “Virtuoso:
Narrowing the Semantic Gap in Virtual Machine Introspection,” in
Proceedings of the 2011 IEEE Symposium on Security and Privacy,
2011.

[30] M. Egele, C. Kruegel, E. Kirda, and G. Vigna, “PiOS: Detecting
Privacy Leaks in iOS Applications,” in Proceedings of the Network

and Distributed System Security Symposium (NDSS), 2011.

[31] W. Enck, P. Gilbert, B.-G. Chun, L. P. Cox, J. Jung, P. McDaniel,
and A. N. Sheth, “TaintDroid: An Information-Flow Tracking System
for Realtime Privacy Monitoring on Smartphones,” in Proceedings

of the 9th USENIX conference on Operating systems design and
implementation, 2010.

[32] W. Enck, D. Octeau, P. McDaniel, and S. Chaudhuri, “A Study of
Android Application Security,” in Proceedings of the 20th USENIX

conference on Security, 2011.

[33] W. Enck, M. Ongtang, and P. McDaniel, “On Lightweight Mobile Phone
Application Certification,” in Proceedings of the 16th ACM Conference

on Computer and Communications Security, 2009.

[34] A. P. Felt, E. Chin, S. Hanna, D. Song, and D. Wagner, “Android
Permissions Demystified,” in Proceedings of the 18th ACM Conference

on Computer and Communications Security, 2011.

[35] Y. Fu and Z. Lin, “Space Traveling across VM: Automatically Bridging
the Semantic Gap in Virtual Machine Introspection via Online Kernel
Data Redirection,” in Proceedings of the 2012 IEEE Symposium on

Security and Privacy, 2012.

[36] T. Garfinkel and M. Rosenblum, “A Virtual Machine Introspection
Based Architecture for Intrusion Detection,” in Proceedings of the 10th
Network and Distributed System Security Symposium, 2003.

[37] M. Grace, Y. Zhou, Z. Wang, and X. Jiang, “Systematic Detection of
Capability Leaks in Stock Android Smartphones,” in Proceedings of the

19th Annual Symposium on Network and Distributed System Security,
2012.

[38] P. Hornyack, S. Han, J. Jung, S. Schechter, and D. Wetherall, “These
Aren’t the Droids You’re Looking For: Retrofitting Android to Protect
Data from Imperious Applications,” in Proceedings of the 18th ACM

Conference on Computer and Communications Security, 2011.

[39] J.-Y. Hwang, S.-B. Suh, S.-K. Heo, C.-J. Park, J.-M. Ryu, S.-Y. Park,
and C.-R. Kim, “Xen on ARM: System Virtualization Using Xen
Hypervisor for ARM-Based Secure Mobile Phones,” in Proceedings of

the 5th Consumer Communications and Networking Conference, 2008.

[40] X. Jiang, X. Wang, and D. Xu, “Stealthy Malware Detection Through
VMM-based “Out-Of-the-Box” Semantic View Reconstruction,” in Pro-
ceedings of the 14th ACM Conference on Computer and Communica-

tions Security, 2007.

[41] S. T. Jones, A. C. Arpaci-Dusseau, and R. H. Arpaci-Dusseau, “VMM-
based Hidden Process Detection and Identification using Lycosid,”
in ACM International Conference on Virtual Execution Environments,
2008.

[42] D. Kantola, E. Chin, W. He, and D. Wagner, “Reducing Attack Surfaces
for Intra-Application Communication in Android,” in Proceedings of
the second ACM workshop on Security and privacy in smartphones

and mobile devices, 2012.

[43] M. Lange, S. Liebergeld, A. Lackorzynski, A. Warg, and M. Peter,
“L4Android: A Generic Operating System Framework for Secure
Smartphones,” in Proceedings of the 1st Workshop on Security and

Privacy in Smartphones and Mobile Devices, 2011.

[44] Y. Nadji, J. Giffin, and P. Traynor, “Automated Remote Repair for
Mobile Malware,” in Proceedings of the 27th Annual Computer Security
Applications Conference, 2011.

[45] M. Nauman, S. Khan, and X. Zhang, “Apex: Extending Android Permis-
sion Model and Enforcement with User-Defined Runtime Constraints,”
in Proceedings of the 5th ACM Symposium on Information, Computer

and Communications Security, 2010.

[46] “OKL4 Microvisor,” http://www.ok-labs.com/products/okl4-microvisor.

[47] M. Ongtang, S. McLaughlin, W. Enck, and P. McDaniel, “Semantically
Rich Application-Centric Security in Android,” in Proceedings of the

2009 Annual Computer Security Applications Conference, 2009.

[48] D. P. Quigley, J. Sipek, C. P. Wright, and E. Zadok, “UnionFS: User-
and Community-oriented Development of a Unification Filesystem,” in
Proceedings of the 2006 Linux Symposium, July 2006.

[49] M. Sharif, W. Lee, W. Cui, and A. Lanzi, “Secure In-VM Monitoring
Using Hardware Virtualization,” in Proceedings of the 16th ACM

Conference on Computer and Communications Security, 2009.

[50] R. Ta-Min, L. Litty, and D. Lie, “Splitting Interfaces: Making Trust
between Applications and Operating Systems Configurable,” in Pro-
ceedings of the 7th Symposium on Operating Systems Design and

Implementation, 2006.

[51] Y. Tang, P. Ames, S. Bhamidipati, A. Bijlani, R. Geambasu, and
N. Sarda, “CleanOS: Limiting Mobile Data Exposure with Idle Evic-
tion,” in Proceedings of the 10th USENIX conference on Operating

Systems Design and Implementation, 2012.

[52] P. Varanasi and G. Heiser, “Hardware-Supported Virtualization on
ARM,” in 2nd Asia-Pacific Workshop on Systems (APSys’11), 2011.

[53] A. Vasudevan, E. Owusu, Z. Zhou, J. Newsome, and J. M. McCune,
“Trustworthy Execution on Mobile Devices: What security properties
can my mobile platform give me?” in Proceedings of the 5th interna-

tional conference on Trust and Trustworthy Computing, 2012.

[54] A. Vasudevan, B. Parno, N. Qu, V. D. Gligor, and A. Perrig, “Lockdown:
Towards a Safe and Practical Architecture for Security Applications
on Commodity Platforms,” in Proceedings of the 5th International

Conference on Trust and Trustworthy Computing (TRUST), 2012.

[55] R. Xu, H. Saı̈di, and R. Anderson, “Aurasium: Practical Policy Enforce-
ment for Android Applications,” in Proceedings of the 21st USENIX

conference on Security symposium, 2012.

[56] L.-K. Yan and H. Yin, “DroidScope: Seamlessly Reconstructing OS
and Dalvik Semantic Views for Dynamic Android Malware Analysis,”
in Proceedings of the 21st USENIX Security Symposium, 2012.

13

