
1

PPSB: An Open and Flexible Platform for
Privacy-Preserving Safe Browsing

Helei Cui, Yajin Zhou, Cong Wang, Xinyu Wang, Yuefeng Du, and Qian Wang

Abstract—Safe Browsing (SB) is an important security feature in modern web browsers to help detect new unsafe websites. Although
useful, recent studies have pointed out that the widely adopted SB services, such as Google Safe Browsing and Microsoft
SmartScreen, can raise privacy concerns since users’ browsing history might be subject to unauthorized leakage to service providers.
In this paper, we present a Privacy-Preserving Safe Browsing (PPSB) platform. It bridges the browser that uses the service and the
third-party blacklist providers who provide unsafe URLs, with the guaranteed privacy of users and blacklist providers. Particularly, in
PPSB, the actual URL to be checked, as well as its associated hashes or hash prefixes, never leave the browser in cleartext. This
protects the user’s browsing history from being directly leaked or indirectly inferred. Moreover, these lists of unsafe URLs, the most
valuable asset for the blacklist providers, are always encrypted and kept private within our platform. Extensive evaluations using real
datasets (with over 1 million unsafe URLs) demonstrate that our prototype can function as intended without sacrificing normal user
experience, and block unsafe URLs at the millisecond level. All resources, including Chrome extension, Docker image, and source
code, are available for public use.
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F

1 INTRODUCTION

SAFE Browsing (SB in short) is a popular security service
adopted by modern web browsers, e.g., Chrome, Firefox,

Safari, Edge, and Opera, to protect users against websites
that attempt to distribute malware via drive-by download [1]
or launch social engineering attacks via phishing and deceptive
content [2]. Warning pages will be displayed to users when
they try to “access dangerous websites or download dan-
gerous files” [3]. Though SB service may be implemented in
different ways, the general detection procedure (see Fig. 1) is
to check if the URL to be visited is present on a list of unsafe
URLs, collected and maintained by a remote server. As a
side note, it is also common practice to reserve a local filter
that contains either a whitelist [4] or a blacklist [5] on the
client side to circumvent heavy communication overhead.

Although useful, when enabling such SB services, users
do have privacy concerns that their visited URLs (i.e.,
browsing history) could be collected and further abused
for various purposes, e.g., targeted advertisements, back-
ground scanning, and even government surveillance [6].
To this end, we conduct a survey of popular SB services
regarding data they collect, and the result is summarized
in Table 1. Surprisingly, except the Google Safe Browsing
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Fig. 1. General procedure of Safe Browsing services.

(GSB) Update API [5], other services send URLs to remote
servers, either in full-length hash value (i.e., Opera Fraud
and Malware Protection [7]) or in the original form (e.g.,
Microsoft SmartScreen [4] and GSB Lookup API [8]). This
suggests that the service providers (or other web browsers
who adopt one of these SB services) could identify and
obtain the URLs users visited.

By contrast, the GSB Update API (the current version
is v4) [5] does not require the users’ URLs nor the cor-
responding full-length hashes. Instead, the browser first
canonicalizes the target URL and forms up to 30 decom-
positions (see some examples in Fig. 2). Next, it computes
full-length hashes (via SHA-256) and truncates 4- to 32-byte
hash prefixes for all expressions. A local database regarding
all hash prefixes of unsafe URLs is reserved on the client
side for filtering the truncated prefixes. Only when the
decomposed target prefix matches any record in the local
database will this prefix be transmitted to the server in
order to derive a list of full hashes starting with the same
prefixes for final matching. This seemingly privacy-friendly
mechanism is now widely adopted in Chrome, Firefox [9],
and Safari [10] with a massive user base, say over three
billion devices use the GSB service [11].

However, recent research by Gerbet et al. [12] and
its follow-up study [13] indicated that the underlying
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TABLE 1
A brief survey of data collected by popular Safe Browsing services.

SB Service Data Collected Known Products

Google Safe Browsing

(Update API)

Hash prefix(es)

of URL

Chrome1, Safari, Firefox,

Android WebView, etc.

Google Safe Browsing

(Lookup API)
Full URL (Experimental use)

Microsoft Windows

Defender SmartScreen
Full URL

Windows, IE, Edge, and

Chrome Extension

Opera Fraud and

Malware Protection

Domain &

hash of URL
Opera

anonymization technique of hashing and truncation fails
when the server receives multiple prefixes for a URL. This
kind of multiple prefix matching can reduce the uncertainty
of URL re-identification or inference, due to the fact that
the total number of URLs (and domains) on the Internet
is finite and even sub-domain information might suffice for
user tracking. What’s worse, a malicious SB service provider
can potentially abuse the GSB-like service for stealthy user
behavior tracking. For instance, given a particular URL
(e.g., relating to some political news), the SB provider could
insert the hash prefixes of its (all) decompositions into the
local filter. Later, once a user accesses the same URL (or
the similar ones that share some decompositions, including
the same domain), the matched prefixes would be sent to
the remote server, and the SB provider can easily recover
the visited URL (see Section 2 for a detailed description
for this attack). The potential threat that the visited URLs
could be recovered by a malicious SB service provider
who applied the GSB Update API contradicts the privacy
notice of Google Safe Browsing, i.e., the SB service provider
“cannot determine the real URL from this information” [14].
Hence a Privacy-Preserving Safe Browsing (PPSB) service is
desired to strengthen the protection of user privacy.

From another perspective, an integrated SB service,
whose contents are contributed by different service
providers, would certainly improve user experience as each
provider is very likely to hold a list of unsafe URLs that
others do not possess [12], [15], [16]. However, this also
brings more challenges to our design given the following
considerations. For starters, consider a service provider
that owns a high-quality blacklist, which may be more
frequently updated or simply contains more items. There is
no incentive for this provider to publish its blacklist publicly
or share it with other providers freely, as these are the most
valuable asset of the blacklist providers. Directly sharing
these blacklists with others in an uncontrollable way could
make these dataset be obtained by every user, including the
competitors. This is indeed the case in reality. For instance,
a recent comparative study from NSSLab [17] suggests that
the Microsoft SmartScreen [4] performs better than the GSB
within the area of socially engineered malware protection,
because Microsoft maintains a more updated blacklist. It

1. The latest Chrome 73 has an option “Help improve Safe Browsing”,
next to the “Safe Browsing” option. Once enabled, Chrome would
periodically send extra system information and page content to Google.

For the exemplary URL http://a.b.c/d.ext?param=1, the client 
will try these possible strings:
• a.b.c/d.ext?param=1
• a.b.c/
• b.c/

• b.c/d.ext?param=1
• a.b.c/d.ext
• b.c/d.ext

Fig. 2. Exemplary decompositions for a queried URL.

is unlikely that Microsoft would share its blacklist in a
transparent form so that other competitors could catch up.
Besides, even if Microsoft is willing to share its blacklist in a
protected manner, to the best of our knowledge, no existing
mechanism whatsoever is able to support the integrated
SB service whilst protecting the private blacklists. This
tension between the competitive nature of different service
providers2 and the bright vision of a collaborative platform
urges a novel solution that supports the integration of SB
services provided by different parties without the exposure
of providers’ proprietary assets.

We now conclude that a PPSB service should satisfy
the following formal requirements. First, the PPSB service
should provide a strong privacy guarantee that the visited
URLs cannot leave the user’s browser in any form that could
be re-identified by the service provider. Second, the PPSB
service should provide a mechanism that allows the usage of
blacklists from different providers, while at the same time,
the privacy of these blacklists should be maintained. More
precisely, the proprietary assets of the service providers
cannot be revealed in any manner.

Our work. To meet the requirements, we design and imple-
ment an open and flexible platform for the PPSB service.

Compared with the GSB, to achieve the privacy guaran-
tees, our design requires a relatively larger local database for
storing the frequently updated encrypted blacklists, which
are privately contributed by different providers with their
own encryption keys. However, this brings challenges to
our design. First, the client needs to search into the list of
encrypted unsafe URLs without knowing its encryption key.
To this end, we leverage the oblivious pseudorandom func-
tion (OPRF) [18] protocol to obtain a valid token with the
aid of the key server maintained by the blacklist provider,
and then check against the encrypted blacklist. During this
process, though some information of the URL is needed
to obtain the token from the key server, such information
cannot be revealed thanks to the “oblivious” property of the
OPRF protocol. Second, the encrypted blacklists should not
bring too much storage burden on the clients. Meanwhile,
as the valid unsafe URLs (or domains) change over time
(e.g., the number of records in the constantly updated black-
lists maintained by the famous blacklist providers Phish-
Tank [15] and MalwareDomains [16] are usually less than
30,000), periodical update should be supported in a privacy-
preserving manner. Thus, we further customize an efficient
searchable encryption construction [19] into our design.

Besides that, our PPSB service retains the similar efficient
processing flow to the GSB service [5]. In brief, the URL to

2. The blacklists from PhishTank [15] and MalwareDomains [16]
may not need protection as they’re publicly available. However, the
mechanism of using extra blacklists at the same time is still missing in
today’s SB services.
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be vetted is first converted into several expressions (e.g.,
the ones in Fig. 2) to prevent some potential unsafe URLs
from slipping through the net. Next, the hashes of these
expressions are computed via SHA-256, where the truncated
hash prefixes of the vast majority of safe URLs can be
quickly detected via a local filter. For those undetermined
ones, the client needs to obtain OPRF tokens by sending the
full-length masked hashes to a target key server, and then
checks against the encrypted blacklist locally.

Unlike most existing SB services that primarily bind to a
certain browser or use selected blacklists (either collected by
themselves [3], [4], [20] or provided by cooperative blacklist
providers [21]), our PPSB bridges the client applications (i.e.,
web browsers) and more blacklist providers. This boosts the
capability of PPSB to detect unsafe URLs.

To make PPSB easier to use, we develop a client applica-
tion, i.e., a Chrome extension. Hence, current Chrome users
can directly use our PPSB service to detect unsafe URLs with
privacy guarantees. Moreover, to encourage more third-
party blacklist providers to join our PPSB platform with
minimal efforts, we provide a fully functional API as well as
a lightweight yet easy-to-deploy Docker image (≈135 MB),
so blacklist providers can focus on preparing high-quality
and update-to-date blacklists (e.g., less than 3 MB for each
encrypted blacklist built upon the frequently updated public
data from the above-mentioned providers [15], [16]).

To the best of our knowledge, PPSB is the first design that
enables safe browsing with the guaranteed privacy protection of
users and blacklist providers simultaneously. The primary
contributions are summarized as follows:
•We analyze existing SB services and give a summary of

the potential leakage of these services. Inspired by [12], [13],
we conduct thorough investigations upon active SB services,
carry out concrete experiments upon users’ privacy leakage,
and report that the users’ browsing histories could be leaked
to (or inferred by) SB service providers, which raises privacy
concerns to users.
• We propose the first PPSB service. It provides strong

security guarantees that are missing in existing SB services.
In particular, it inherits the capability of detecting unsafe
URLs, while at the same time protects both the user’s pri-
vacy (browsing history) and blacklist provider’s proprietary
assets (the list of unsafe URLs).
• We implement a full-fledged PPSB prototype, consist-

ing of a client-side Chrome extension for users and a server-
side API (and Docker image) for blacklist providers. The
evaluation with real datasets and formal security analy-
sis show the efficiency, effectiveness, and security strength
of our design. All resources, including Chrome extension,
Docker image, and source code, are available for public use3.

2 MOTIVATING EXAMPLE

In this section, we will use an example to show why the
state-of-art anonymization technique of the Google Up-
date API still fails when adopted by a malicious service
provider [12], [13], which motivates our work to propose
a privacy-preserving SB service.

3. The PPSB Chrome extension: https://goo.gl/L2whw2, the Docker
image on Docker Hub: https://hub.docker.com/r/ppsb/server/, and
the code on GitHub: https://github.com/ppsb201804/PPSB.

Client Remote Server
The same or
similar URL

A specific
URL

1. Insert all its decompositions’ 
hash prefixes

2. Send back matched hash prefixes
Local filter

3. Infer the original URL/ 
domain based on the prior 
knowledge of the prefix filter

b46f999a
d344c1b6
cbb24be8
…

Fig. 3. A possible way to infer users’ browsing history by leveraging the
low collision rate of hash prefixes of URLs.

Assume that a malicious SB service provider wants to
know whether a user is visiting a particular web page, e.g.,
some political news. One way to achieve this is that the web
browser sends all the visited URLs to a remote server, either
in the plaintext, hash value or encrypted format. However,
this behavior can be detected by monitoring and analyzing
the browser, e.g., using the taint analysis technique [22]. A
more stealthy way is the malicious SB service provider can
identify the URLs users visited by manipulating the local
hash prefix of the Google Update API.

Specifically, in order to track a particular URL (e.g., https:
//health.usnews.com/wellness/food/slideshows4), the SB
service provider can insert the 32-bit hash prefixes
of all its decompositions, e.g., c01e362f (health.
usnews.com/wellness/food), ae7b3778 (health.usnews.
com/), 88a47746 (usnews.com/), etc., and then push this
newly updated prefix filter to the clients. Later, once a
user visits the web page (or similar URLs that share some
decompositions), the matched hash prefixes would be sent
to the remote SB server. Based on the prior knowledge of
the prefix filter (i.e., the mappings between the hash prefixes
and their corresponding URLs), the server can infer the URL
(or domain) navigated by the user.

However, there is a chance that other URLs may have
the same hash prefixes with the URLs tracked (hash prefix
collision). In this case, the URL may be misidentified. To
evaluate the possibility of hash prefix collision, Gerbet et
al. [12] have calculated the number of unique URLs/do-
mains that have the same hash prefix by using over 60
trillion URLs (which is the whole URLs collected by Google
as of 2013). The results showed that as most 14,757 URLs
and 3 domains can be located by using a single hash prefix.
As the server receives multiple prefixes for each URL in
the GSB, the uncertainty of URL/domain re-identification
or inference can be reduced greatly, say as few as 2 prefixes
are sufficient [12]5. Thus, exposing (locally matched) 32-bit
hash prefixes to the remote server can potentially be abused
as a tool to track end users [12].

Note that, this way to track users is stealthy and hard
to detect. First, only the hash prefixes of targeted users

4. We use this only as an example, and the potential attack is not
limited to this URL.

5. We develop a tool to count the number of hash prefix collisions in
a given URL list, inspired by [12]. Here, a collision means that a hash
prefix is shared by two or more URLs. By using our dataset (that com-
bines all unique URLs/domains from the Shallalist [23] dataset with
over 1.7 million records and the Alexa-Top-1-Million-Sites [24] dataset
with 1 million records), we observe that over 99.96% (i.e., 2,975,392)
hash prefixes do not have any collisions (i.e., each of these 32-bit hash
prefixes can uniquely point to its original URL decomposition) and all
the remaining 0.04% (i.e., 1,118) hash prefixes only have 2 collisions
(i.e., one prefix maps to two URLs). See GitHub: https://github.com/
ppsb201804/PPSB/tree/master/experiments/test gsb prefix attack

https://goo.gl/L2whw2
https://hub.docker.com/r/ppsb/server/
https://github.com/ppsb201804/PPSB
https://health.usnews.com/wellness/food/slideshows
https://health.usnews.com/wellness/food/slideshows
health.usnews.com/wellness/food
health.usnews.com/wellness/food
health.usnews.com/
health.usnews.com/
usnews.com/
https://github.com/ppsb201804/PPSB/tree/master/experiments/test_gsb_prefix_attack
https://github.com/ppsb201804/PPSB/tree/master/experiments/test_gsb_prefix_attack
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Users
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Fig. 4. Overview of our proposed PPSB service.

is manipulated. Other users are not affected. Second (and
more important), users cannot decide if they have been
tracked and which URLs are being tracked, since the exact
URLs cannot be reverted solely via the local hash prefix.

3 PROBLEM STATEMENT

3.1 Overview
In order to detect unsafe URLs, existing SB services require
the sharing of visited URLs, either in cleartext [4], [8], full-
length hash [7] or 4- to 32-byte hash prefix [5], [25]. As a
result, the SB service providers or adversaries could directly
obtain users’ browsing history, or indirectly infer the visited
URLs by leveraging the shared information [12], [13]. This
motivates our work to provide a privacy-preserving safe
browsing (PPSB) service.

Our targeted PPSB service involves two different enti-
ties: the user, who uses a web browser to surf the Inter-
net; the blacklist provider (or service provider), e.g., Phish-
Tank [15], MalwareDomains [16], Netcraft [26], and Squid-
blacklist [27], who has expertise and capabilities to collect,
verify and update a list of unsafe URLs. Hereinafter, we
may interchangeably use “blacklist provider” and “service
provider”, because a blacklist provider can leverage our
platform to provide PPSB services.

As shown in Fig. 4, users rely on a client application (i.e.,
the PPSB extension as a plug-in in existing web browsers) for
checking whether the URL to be navigated is known to be
malicious. Meanwhile, blacklist providers deploy their own
PPSB servers for encrypting, publishing, and updating their
collected URL blacklists and performing the designed PPSB
service. Here, we choose browser extension as the form
of our client application because it is minimally intrusive
for users. For instance, the popularity of the Chrome SB
extension released by Microsoft has shown great potential
in this market (see Fig. 15 in Section 8).

After installing the PPSB extension, the user can add one
or multiple blacklist provider(s) via an options page (see
Fig. 5). Then the extension automatically downloads the lat-
est database from the PPSB server of each specified blacklist
provider, which includes an encrypted blacklist and a hash
prefix filter. When performing the detection, the extension
can quickly skip the vast majority of safe URLs by using the
prefix filter without server interaction; for those potentially
unsafe ones, the extension needs to interact with the PPSB
server to obtain secure tokens (derived from the queried
URL) and to perform final detection over the encrypted
blacklist(s) locally, which is the major difference from the
GSB. Unlike all existing SB services, the queried URLs and
even hashes that can be used for prediction always remain
private in the PPSB service.

Add New Update All Remove All

A

Blacklist Providers

Update

Remove

#  Name Server Address                   Version    Metadata …

1  PhishTank 2.0            No    …

2  MalwareDomains 2.0            Yes …http://malwaredomainstest.
opensafebrowsing.com

http://phishtanktest.open
safebrowsing.com

PPSB | chrome-extension://…/option.html …

Update

Remove

…

Fig. 5. User interface of options page in PPSB extension.

3.2 Threat Model and Assumptions

Consistent with existing SB services, the blacklist providers
have the incentive to collect and publish unsafe URLs for
helping users to avoid websites that contain malware or
phishing and deceptive content, e.g., for the better market-
ing purpose. We assume these blacklist providers and the
corresponding PPSB servers are semi-trusted. They faithfully
perform the designed procedures, i.e., the database prepa-
ration/update and the server-aided token generation. But
they should not be aware of the queried URLs from users.

Meanwhile, we consider that users, even masqueraded
by adversaries, should be unable to recover the collected
unsafe URLs by using our PPSB extension in their web
browsers, as these are the most valuable asset of the blacklist
providers. Note that the correctly installed PPSB extension
will not send the URLs or even the corresponding hashes in
cleartext to any other parties. To ensure this, we publish the
source code of the PPSB extension for public review.

Besides that, the potential URL leakage via the other
channels (such as the aforementioned vulnerability when
using GSB service, the defects or backdoors in browsers
themselves, and other malicious extensions), and side-
channel attacks based on power, traffic analysis or timing
attacks (e.g., measuring the detection time) are out of scope.

Discussion on (Malicious) Blacklist Providers. As an open
platform, a malicious party might leverage PPSB to degrade
the client-side user experience, like inserting a number
of fake or safe URLs or increasing the server-side delay.
To address this potential issue, PPSB provides a flexible
mechanism for users to add or remove blacklist providers
(see Fig. 5). Moreover, some review-based mechanisms (e.g.,
reputation-based ranking) could be leveraged by our system
to help users to choose the providers with good reputations,
e.g., PhishTank. Though the malicious provider could by-
pass the review system to promote a (malicious) blacklist,
the user’s browsing history is still not leaked and thus being
protected. Nevertheless, how to make the review system
more robust is an open question, and the progress in this
field could be borrowed by our system in the future.

3.3 Design Goals

• Privacy-preserving: to ensure that blacklist providers
are unable to derive a user’s URL from the information
collected during the server-aided token generation process,
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and users are unable to recover the unsafe URLs from the
downloaded database from a blacklist provider.
• Fast processing: to ensure that the PPSB service is

introduced in a minimally intrusive way, i.e., the entire
detection routine should be sufficiently fast.
• Backward compatibility and easy customization: to

ensure that the PPSB service is compatible with existing
popular web browsers, e.g., Chrome, and to allow users to
add and delete other blacklist providers with minimal effort.
• Fast deployment and auto synchronization: to sim-

plify the deployment effort of the PPSB server, and to allow
blacklist providers to update and synchronize new versions
to all clients in an easy and convenient way.

3.4 Preliminaries

Bloom Filter. Bloom filter is a space-efficient probabilistic
data structure for high-speed set membership tests [28].
Briefly, it uses an m-bit array to represent a Set of at most n
items. For each query item x, it will be mapped into k posi-
tions, which is calculated by a set of k independent uniform
hash functions H = {H1, ...,Hk}. If

∧k
i=1Hi(x) = 1 (“

∧
”

is the bitwise AND operation), x is probably in S (with a
tunable probability ε of being wrong); otherwise, x is not in
S (with no error). The lower the false positive rate ε is, the
more bits the filter costs. Here, we use Bloom filter for prefix
filtering, which allows a tolerable false positive rate.
Oblivious Pseudorandom Function (OPRF). OPRF proto-
col [18] enables two parties, say Alice holding an input
message m and Bob holding a secret key k, to jointly and
securely compute a pseudorandom function (PRF) F (k,m),
i.e., {0, 1}∗ × {0, 1}∗ → {0, 1}l. This two-party compu-
tation protocol is operated obliviously in the sense that
Alice only learns the output value, while Bob learns noth-
ing from the interaction. Here, we use an efficient OPRF
instantiation based on the security of the Elliptic Curve
Discrete Logarithm Problem (ECDLP), namely EC-OPRF [18]:
F (k,m) = H3(k · H2(m)), where H2 : {0, 1}∗ → E is a
secure hash function that maps a binary stringm of arbitrary
length to a point G on an elliptic curve E, H3 : E → {0, 1}l
is a secure hash function that derives a binary string from
an elliptic curve point G ∈ E, k is a randomly selected
secret key, and c · G denotes the multiplication of a scalar
integer c with a point G on an elliptic curve. In particular,
Alice picks a random integer r and sends X = r · H2(m)
to Bob. Then Bob sends back Y = k · X . Lastly, Alice
computes Z = r−1 · Y = k · H2(m) and obtains H3(Z),
i.e., H3(k · H2(m)), as the PRF output. Note that Alice has
access to the elliptic curve point H2(m) and k ·H2(m), but
she is unable to recover Bob’s secret k because this is the
ECDLP and is known to be hard to compute [18].

4 THE PROPOSED PPSB DESIGN

4.1 Design Rationale

Almost every popular browser nowadays is equipped with
a certain SB service to expand users’ knowledge upon the
safety of the website to be visited. The common practices
adopted by existing SB services follow the natural design
of directly processing users’ transmitted data on the server

side6. However, without any extra protection, data sent by
users contains sufficient information that can be utilized on
the server side to (re-)identify [12], [13] the users’ browsing
history. Therefore, it is essential that any data leaving the
client side should be effectively masked such that the server
cannot interpret any valuable information from the masked
data. Meanwhile, to protect the proprietary knowledge of
independent blacklist providers, some encryption method
is indispensable here.

Given the above two considerations, the target problem
can be formulated as follows. There are two parties, namely
a blacklist provider and a user, who have a list of unsafe
URLs B and a queried URL u, respectively. The user wants
to verify whether or not u ∈ B while preserving B and u
secret to each other. To solve this, we use the cryptographic
primitive OPRF [18] to construct an encrypted matching
scheme, similar to the scheme in [29]. In brief, the blacklist
provider first generates each unsafe URL a secure token t
via a PRF with a secret key k, and distributes the encrypted
blacklist D = {t1, · · · , tn} to clients for later detection via a
server-aided encrypted matching scheme.

Data Structure for Encrypted Blacklist. Unlike the case
of [29], the data structure of D is designed as the Set in our
usage scenario. We intentionally choose not to use Bloom
filter due to its inherent false positive rate, which is not
suitable for the blacklist URL checking. Any false positive,
even with a very small chance, would inevitably affect the
user’s surfing experience. This constraint compels us to
adopt encrypted data structures that support exact URL
testing in a private way. After obtaining a copy of D, the
client runs the OPRF protocol with the blacklist provider
to jointly compute a valid token tq without revealing their
inputs, i.e., the secret key k of the provider and the queried
URL uq of the user. With tq , the client can check if it is
present on the blacklist D locally. If so, it would show a
warning page immediately.

Supporting Metadata. Sometimes, the blacklist provider
wants to provide extra metadata m corresponding to each
unsafe URL u, which helps distinguish between threat
types, e.g., malware or phishing. In this case, we consider the
metadata should also be protected until a match is found
since the metadata usually contains sensitive information,
such as threat type, data source, and update time, which
could incur potential side information leakage, like using
frequency analysis to obtain some statistical information.

To this end, we further integrate the searchable sym-
metric encryption (SSE) construction [19] into the above
fundamental design, i.e., using OPRF to generate the secure
tokens used in SSE. So the above-mentioned secure token t
will be associated with an encrypted value v derived from
m, and m will be exposed iff a match t is found. The similar
treatment has been successfully applied in many scenarios
for obtaining a server-aided OPRF token while hiding the
input and secret key from each other, e.g., secure data
deduplication [30], [31], outsourced private information re-
trieval [32], similarity joins over encrypted data [33], and

6. A simple approach by directly sending a hash list of unsafe URLs
and performing detection on the client is undesirable, as the shared
blacklist can be abused stealthily and such proprietary knowledge
would be violated.
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−→ shows the subroutine of prefix filtering, which can quickly detect the vast majority of safe URLs; 3) the arrow =⇒ shows the main and complete
detection routine when there is a match in the local prefix filter.

secure dynamic malware detection [34]. Back to our usage
scenario, if metadata is deemed as an indispensable com-
ponent to be shown, SSE essentially supports the output of
metadata on the client side when matching the queried URL.
In case the metadata is omitted by service providers, e.g.,
PhishTank would be a case where all types of dangerous
URLs would be phishing, the standard of our usage scenario
naturally degenerates, and a Set data structure combined
with our server-aided OPRF token generation would serve
the purpose.

Optimization via Prefix Filter. Following a similar approach
adopted in the GSB Update API, we can also apply the
prefix filtering technique to quickly detect the vast majority
of safe URLs. To achieve this, the blacklist provider needs to
publish an extra prefix filter that contains 32-bit (short) hash
prefix of each unsafe URL on the blacklist. Due to the es-
sential collisions incurred by this kind of short hash, others
are unable to reliably discover the occurrence of a specific
URL or recover all the unsafe URLs in the target blacklist
offline. We emphasize that this is completely different from
the vulnerable usage pointed in [12], [13], which leverages
the correlated hash prefixes to re-identify the URL requested
by a user. Because the data sent to the server is protected by
the “oblivious” property of OPRF, which does not reveal the
original hash prefix as in GSB.

Remark. We note that the design requirements of PPSB are
also related to a line of prior art on private membership
test [29], [35], [36]. However, those cryptographic designs
either incur relatively higher communication delay (at the
second level) [36], or heavier server-side operations [35],
[36], both of which might impede the overall system scala-
bility and delay-sensitive services that PPSB aims to achieve.
Besides, as mentioned previously, the false positives inher-
ited from Bloom filter in prior art [29], [35], [36] also do not
quite fit into the safe browsing scenario. In the following, we
elaborate the major steps of the PPSB service, also shown in
Fig. 6. For completeness, we focus on the usage scenario that
needs metadata to each unsafe URL, and the case without
metadata can be simplified by omitting the metadata.

Algorithm 1 Build Encrypted Blacklist with Metadata
Input: The secret key of a blacklist provider: K = (k1, k2);

the URL blacklist: B = {(u1,m1), · · · , (un,mn)}, where
ui is an unsafe URL and mi is its metadata.

Output: Encrypted blacklist D.
1: Initialize a dictionary (key-value) structure D;
2: for i← 1 to n do
3: hi = H1(ui); // H1 : {0, 1}∗ → {0, 1}l;
4: Gi = H2(hi); // H2 : {0, 1}∗ → E;
5: t1 = F (k1, hi) = H3(k1 ·Gi); // H3 : E → {0, 1}l;
6: t2 = F (k2, hi) = H3(k2 ·Gi);
7: vi = Enc(t2,mi);
8: D.put(t1, vi);
9: end for

10: return D;

4.2 Setup Stage: Database Building and Updating by
Blacklist Provider

First of all, a blacklist provider should build an encrypted
blacklist to compare with the queried URLs from users,
without leaking the collected unsafe URLs. To achieve this,
we apply one of the famous SSE constructions [19], which
is implemented by using a generic dictionary (i.e., key-
value store). Particularly, the blacklist contains a pair of
encrypted key (unsafe URLs) and value (metadata of the
corresponding URL, e.g., threat type, platform type, and
cache duration). After finding a match in the blacklist, a
warning page will be shown to users with the metadata.

Algorithm 1 illustrates the detailed procedure of build-
ing the encrypted blacklist D with metadata. We use u
to denote the unsafe URL and m to denote the metadata.
The objective is to transform the original URL blacklist
(expressed in strings) B = {(u1,m1), · · · , (un,mn)} to a
set of encrypted key-value pairs so that they can be stored
in a dictionary D. For each unsafe URL ui, the blacklist
provider first computes the full-length hash hi via the hash
function H1 : {0, 1}∗ → {0, 1}l (i.e., SHA-256 in our
prototype). Then the provider maps the hash value hi to
a point Gi on the elliptic curve E via the hash function
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H2 : {0, 1}∗ → E. Next, a token pair (t1, t2) are generated
from Gi: t1 = H3(k1 · Gi) and t2 = H3(k2 · Gi), where k1

and k2 are secret keys used for PRF F (k, x) = H3(k ·H2(x))
and H3 : E → {0, 1}l is the hash function that maps an
elliptic curve point G ∈ E to a binary string. Lastly, the
key-value pair (t1, vi) will be inserted into a dictionary
D, where vi is encrypted metadata computed by using a
symmetric encryption algorithm Enc with t2 and mi, i.e.,
vi = Enc(t2,mi). After this step, the encrypted blacklist D
will be distributed to the users’ browsers for PPSB service.
Keeping the Encrypted Blacklist Update-to-Date. To en-
sure protection against the latest threats, the encrypted
blacklist D requires regular updates once the corresponding
blacklist provider releases a new version. In practice, such
an update does not always add records but may need to
remove outdated ones, e.g., the number of records in the
constantly updated blacklists maintained by PhishTank [15]
and MalwareDomains [16] is usually less than 30,000. This
is especially important in our design because we need to
avoid any unnecessary client-side storage. Therefore, our
design naturally supports dynamic update operations (i.e.,
add and delete) to the encrypted blacklist D, while ensuring
the forward privacy [37], [38], [39] (see more in Section 5).
And these changes could be synchronized to users’ local
database periodically from the blacklist provider.

To add new records, one direct approach is to update the
encrypted blacklist by inserting these newly prepared key-
value pairs. Specifically, for each new record (uadd,madd),
the blacklist provider first computes (t1, Enc(t2,madd))
as the same steps in Algorithm 1, where t1 = H3(k1 ·
H2(H1(uadd))) and t2 = H3(k2 · H2(H1(uadd))). Then
the extension will fetch these encrypted key-value pairs
and insert them into the corresponding D. To delete those
outdated records, the blacklist provider can compute the
keys referring to the key-value pairs in D, i.e., tdel =
H3(k1 ·H2(H1(udel))). Then the extension will remove them
based on these keys accordingly.
Discussion on Metadata. The metadata in our design sup-
ports, in principle, a variety of information, since they can
be expressed in String. Nevertheless, to ensure that the en-
crypted blacklist does not disclose the length of each meta-
data, the blacklist provider needs to use random paddings
such that all metadata have a fixed length. If the metadata
can be omitted, e.g., simply popping up a warning page
to show the URL is unsafe, then the encrypted blacklist D
can be stored in a Set or other space-efficient data structures
with zero false positives, like delta-encoded table [12].
Remark. The first two real encrypted blacklists built from
the datasets (14,583 records in PhishTank [15] and 27,013
records in MalwareDomains [16]) in our current prototype
are only 1.11 MB and 2.79 MB, respectively, in uncom-
pressed JSON format. Even when the number of records
reaches the same scale as GSB (around 1 million unsafe
URLs [40]), the size would be about 77 MB (see Fig. 14 in
Section 7.3), which does not appear to be a real concern in
modern desktop devices.

4.3 Offline Stage: Prefix Filtering by PPSB Extension

As mentioned before, the blacklist provider can prepare an
additional prefix filter F, which contains the 32-bit hash

Hash of queried URL

r

Signed tokens

Secret key
URL

Masked query

Encrypted 
blacklist

PPSB
Server

PPSB
Extension

OPRF

Fig. 7. The query flow of encrypted matching when there is a match in
the local prefix filter.

prefixes of unsafe URLs, for quickly detecting the vast
majority of safe URLs. To obtain these hash prefixes, the
blacklist provider can directly truncate each full-length hash
hi to a 32-bit short hash shi (after line 3 in Algorithm 1).

Once the prefix filter F is enabled, our PPSB service
will perform a filtering operation, as an offline stage before
actually conducting the detection over encrypted blacklist
D. Particularly, the PPSB extension checks if the hash prefix
(shq) of queried URL is present in F, realized via a Bloom
filter. Similar to the GSB Update API, if no hash prefix is
found, the URL is considered safe. Otherwise, the extension
will continue to perform an online stage as follows.

4.4 Online Stage: Encrypted Matching by PPSB Exten-
sion and Server

From a high-level point of view, the major detection pro-
cess is checking the URL to be visited by a user with the
records in an encrypted blacklist. However, for the purpose
of privacy protection, the URL should never be leaked to
other parties (including the PPSB server and the blacklist
provider) during the PPSB service. To this end, the PPSB
extension generates tokens via an OPRF protocol with the
help of the PPSB server and then tokens are checked over
the encrypted blacklist locally. Once a match is found (i.e.,
the URL is unsafe), the corresponding web page will not be
loaded and users will be warned with the threat information
for further action. We follow the similar practice adopted
by other built-in SB services, like the GSB [3] and the
SmartScreen [4].

Fig. 7 and Algorithm 2 illustrate the detailed query flow
and operations. Assuming the full-length hash hq corre-
sponding to a queried URL uq has been computed before
the above prefix filtering stage, the extension maps the hq
to a point Gq on the elliptic curve E via the same hash
function H2. Then it computes the masked point X = r ·Gq ,
where r is a one-time random value used for hiding the
actual user’s query from the PPSB server (maintained by
a blacklist provider). Upon receiving X , the PPSB server
generates the masked token pair (Y1, Y2) with its secret keys
k1 and k2: Y1 = k1 · X and Y2 = k2 · X , and returns
them back to the extension. Next, the extension obtains
the authorized token pair (t1, t2) by unmasking (Y1, Y2)
with the same r and computing the hash value via H3. At
last, if t1 matches a key in the D, then the corresponding
metadata mq would be decrypted via Dec(t2, vq), where vq
is obtained via D.get(t1). Otherwise, the queried URL uq
does not refer to a known unsafe URL.
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Algorithm 2 Detect Over Encrypted Blacklist with Metadata
Input: The secret key of a blacklist provider: K = (k1, k2);

the encrypted blacklist: D; and a suspect URL: uq , which
is present in the initial filter F.

Output: A valid metadata mq or ⊥.
PPSB extension: // mask the hashed URL

1: hq = H1(uq); // H1 : {0, 1}∗ → {0, 1}l;
2: Gq = H2(hq); // H2 : {0, 1}∗ → E;

3: Pick a random integer r $←− Z;
4: X = r ·Gq ;
5: Send X to the PPSB server;

PPSB server: // generate tokens with the PRF keys
6: Y1 = k1 ·X ; Y2 = k2 ·X ;
7: Send back (Y1, Y2);

PPSB extension: // unmask the query tokens and detect
8: t1 = H3(r−1 · Y1) = H3(r−1 · k1 · r ·Gq) = H3(k1 ·Gq);
9: t2 = H3(r−1 · Y2) = H3(r−1 · k2 · r ·Gq) = H3(k2 ·Gq);

10: if D.get(t1) == null then
11: return ⊥, which represents the URL uq is safe;
12: else
13: vq = D.get(t1); mq = Dec(t2, vq);
14: return metadata mq of the detected unsafe URL;
15: end if

Remark. The complete processing flow of our PPSB service
is similar to the GSB Update API. Both involve prefix
filtering and server-aided full-length hash comparison. The
core difference is that, in PPSB, the blacklist is encrypted and
pre-downloaded, and the data (i.e., hashes of queried URLs
and signed tokens) are exchanged via an OPRF protocol.

5 SECURITY ANALYSIS

Our proposed PPSB service can achieve the following pri-
vacy guarantees: 1) From a user’ perspective, the actual URL
to be checked should never be leaked to the PPSB server
(or the corresponding service/blacklist provider), as well
as its associated hashes or prefixes, even when multiple
queries (for different decompositions) are needed for a
URL. This leads to stronger privacy protection of the user’s
browsing history. 2) From a blacklist provider’s perspective,
the encrypted blacklist should not leak the information of
underlying unsafe URLs to the client (i.e., the extension),
unless there is a match by using a token generated with
the help of the server. This ensures that the information
obtained by the clients is still the same as the existing SB
services, even though the blacklist has been moved from the
server to the client. Now, we analyze the specific designs.
Privacy in Prefix Filtering. We first consider the offline
stage prefix filtering, which is used for quickly detecting the
most of safe URLs and performed by the PPSB extension
locally. The filter F itself only contains the 32-bit short hash
of each unsafe URL. Thanks to the one-way property of
the cryptographic hash function and the intrinsic collisions
incurred by the short hash, a dishonest user can never use
the prefix filter F to reliably recover all the unsafe URLs in
the prefix filter offline.

Recall that a prefix match in F indicates the URL may
be unsafe. Based on this, a dishonest user, who owns a
blacklist, can infer a general picture of the target blacklist

based on the intersection of the common prefixes. We admit
that involving the prefix filter could, to some extent, leak the
existence information of some known unsafe URLs. But this
is not profitable for the users, because they cannot dig new
knowledge regarding the unsafe URLs from the provider.
And such (probabilistic) existence information is inevitably
revealed to the client for safe browsing purpose.
Privacy in Encrypted Matching. We then focus on the
encrypted matching stage as introduced in Section 4.4.
Specifically, once a hash prefix is present in the local filter,
the corresponding full-length hash needs to be securely
converted into encrypted tokens by the server via an OPRF
protocol, and then be checked against the local encrypted
blacklist D. Here, we follow the security notion of SSE [19],
[41], [42] to justify that our encrypted matching scheme
achieves security against adaptive chosen-keyword attacks
under quantifiable leakage profiles. That is, the views of
the client application (i.e., the PPSB extension) are formally
defined in stateful leakage functions. Within a polynomial
number of adaptive queries7, the client only learns the infor-
mation defined in leakage functions, no other information
about the unmatched unsafe URLs in D.

Precisely, three leakage functions are defined for the
view of the encrypted blacklist, query pattern, and access
pattern, where the query pattern indicates the equality of
queried URLs and the access pattern includes the results of
queries:
• Since the encrypted blacklist D is kept on the user’s

client, the extension knows its capacity and size, which are
captured in the leakage function L1, defined as: L1(D) =
(n, (|a|, |b|)), where n is the number of records in D, |a| and
|b| are the bit lengths of encrypted key-value pairs.
• During the PPSB service, the extension sees the re-

peated queries, accessed key-value pairs, and matched
metadata ms, which are captured in the query pattern L2,
defined as: L2({ui}1≤i≤q) = (Nq×q), where Nq×q is a
symmetric binary matrix such that for 1 ≤ i, j ≤ q, the
element in the i-th row and j-th column is set to 1 if ui = uj ,
and 0 otherwise.
• Moreover, the extension also sees the matched results

for the queries {ui}1≤i≤q , which are captured in the access
pattern, defined as: L3({ui}1≤i≤q) = ({(a, b)i,mi}1≤i≤q),
where (a, b)i is the accessed key-value pair and mi is the
corresponding metadata.

Based on the above leakage functions, we can fol-
low the security framework of [19], [41], [42] and give
the simulation-based security definition of our encrypted
matching scheme. It states that a probabilistic polynomial
time simulator S can simulate an encrypted blacklist, re-
spond a polynomial number of queries with simulated
tokens and results, which are indistinguishable with the real
encrypted blacklist, tokens, and results respectively.

Definition 1. Given our encrypted matching scheme Π with
stateful leakage functions (L1, L2, L3), and a probabilistic poly-
nomial time (PPT) adversary A and a PPT simulator S, we

7. Using the rate-limiting strategy [30], e.g., up to 500 URLs per
request in GSB Lookup API [8], can prevent an unlimited number of
requests from a client for guessing the proprietary knowledge of the
collected unsafe URLs.
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define the probabilistic games RealΠ,A(λ) and IdealΠ,A,S(λ)
as follows:
• RealΠ,A(λ) : a challenger C generates secret keys

K = {k1, k2}. Then A selects a URL blacklist B =
{(u1,m1), · · · , (un,mn)} and asks C to build the encrypted
blacklist D via Algorithm 1. Then A adaptively conducts a
polynomial number of secure queries with the tokens t =
{(t1, t2), · · · } generated from C . Finally, A returns a bit “1”
as the game’s output if the detection results are all correct and
consistent; otherwise, “0”.
• IdealΠ,A,S(λ) : A selects B, and S generates D̃ based

on L1. Then A adaptively conducts a polynomial number of
secure queries. From L2 and L3 of each query, S generates the
corresponding t̃, which are processed over D̃. Finally, A returns a
bit “1” as the game’s output if the simulated results are all correct
and consistent; otherwise, “0”.

Our encrypted matching scheme Π is (L1,L2,L3)-secure
against adaptive chosen-keyword attacks if for all PPT adversaries
A, there exists a PPT simulator S such that

Pr[RealΠ,A(λ) = 1]− Pr[IdealΠ,A,S(λ) = 1] ≤ negl(λ),

where negl(λ) is a negligible function in λ.

The proof is given as follows, which demonstrates that
the client-side PPSB extension only knows the above pre-
cisely defined leakage for a set of adaptive queries, and no
other information else.

Theorem 1. Our encrypted matching scheme Π is (L1,L2,L3)-
secure against adaptive chosen-keyword attacks in the random
oracle model if (Enc,Dec) is semantically secure, and F is secure
PRF.

Proof. Based on L1, the simulator S can build a randomized
blacklist D̃ with the same size as the real D, containing
n key-value pairs. Each simulated key-value pair (ã, b̃) are
random strings with the same lengths as the real encrypted
key-value pair (a, b). Thanks to the semantic security of
symmetric encryption and the pseudorandomness of secure
PRF, D̃ is computationally indistinguishable from D.

When the first query u1 is sent, S randomly generates
two strings as the simulated tokens (t̃1, t̃2). After that, a
random oracle O1 is operated in the way of ã = O1(t̃1) to
select (ã, b̃). Then the other random oracle O2 is operated
to get the result (i.e., metadata) m = O2(t̃2||̃b). Note that m
is exactly the same as the real result indicated in L3. And
the due to the pseudorandomness of secure PRF, (t̃1, t̃2)
are also computationally indistinguishable from (t1, t2). In
the subsequent queries, the repeated tokens are recorded
by L2, so S can directly use the previously simulated ones.
Otherwise, S generates tokens via O1 and O2 in the same
way as mentioned above. And the results derived from D̃
are also identical to the real results. Therefore, A cannot
differentiate the simulated tokens and results from the real
tokens and results.

Discussion on Forward Privacy. The recent advancement in
dynamic searchable encryption considers a stronger security
setting, namely Forward Privacy [37], [38], [39]. Under this
setting, the newly updated records cannot be related to
previous search results. Otherwise, an adversary might be

able to launch file-injection attacks to recover the queried
record [43].

Our PPSB design can naturally ensure this forward pri-
vacy, i.e., the extension installed in the users’ browsers is
unable to learn the fact that the updated blacklist records
match some records they previously checked. This is be-
cause all the records in the encrypted blacklist D are distinct
from each other, including the initial ones and subsequently
added ones. In other words, the newly added key-value
pairs (or the “key” tokens when metadata is omitted) have
no connection with the previously checked ones.

In addition, the authors of [39] also described the Back-
ward Privacy, where (fresh) search queries should not leak
matching records that have been deleted before. To our best
knowledge, ensuring this privacy incurs extra overhead in
either computation or communication [38], [39], and we will
explore if there is a more efficient scheme that can fit in our
delay-sensitive service. Nevertheless, the blacklist provider
can periodically update its secret key when performing a
full update (which excludes a batch of outdated records).
This, to some extent, limits the update leakage in the back-
ward privacy setting, as well as the forward privacy setting,
even when a certain URL was added and deleted repeatedly.
This is also supported by our current design as the key is
always maintained by the provider.
Discussion on the Case Without Metadata. In case the
metadata is omitted, the security strength can still hold
because the encrypted blacklist D can be viewed as a Set
that only contains “keys” rather than the key-value pairs
as discussed above. Thus, the leakage function L1 will not
cover the bit length of the “value” (i.e., |b|), and L3 will
become ({ai, oi}1≤i≤q), where oi is the 1-bit detection result
(safe or unsafe). Here, we skip the detailed analysis of this
use case as it is similar to the above case with metadata.

6 IMPLEMENTATION

6.1 Client Application: A Chrome Extension
To make PPSB easier to use and comparable with GSB on
the same stage, we build our client application in the form
of Chrome extension. The PPSB extension aims to block
the connection request to a potential hazardous URL while
preserving the privacy of users’ browsing history. Similar to
the GSB, our PPSB extension also requires local storage for
data well prepared by blacklist providers.

6.1.1 Local Storage
As one of the key components in our PPSB design, the local
storage mainly includes two data structures, i.e., the prefix
filter F and the encrypted blacklist D. All data with respect
to these two data structures is fetched from some PPSB
server(s) maintained by corresponding blacklist provider(s).
Note that for a massive blacklist on the same scale as GSB
(around 1 million unsafe URLs [40]), the uncompressed
encrypted version in JSON format would occupy around
77 MB local storage on the client side. Our implementation
carries through the principle of accelerating the client-side
operations as much as possible, achieving a rather low-level
runtime memory cost in the meanwhile.
• Prefix Filter. As mentioned in Section 4.3, the prefix

filter is applied to avoid frequent communication over the
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TABLE 2
Performance comparison among three data structures that can be used

for prefix filter (#record = 50,000).

Candidate
Avg. Query Time and

Standard Deviation (µs)
Memory

(MB)

Bloom filter [44] 0.722 (± 0.170) 1.866
Delta-encoded table [45] 145.5 (± 94.06) 1.778
Set [46] 0.201 (± 0.105) 3.057

network and consequentially decrease response time dra-
matically. In principle, the prefix filter can be realized via
any data structures that support membership tests, such as
the standard Set in JavaScript, Bloom filter8 [44], and delta-
encoded table [12]. To evaluate which one performs best in
our usage scenario, we evaluate the membership query time
and memory footprint of them in the browser JavaScript
environment. For setup, we generate 50,000 random yet
uniformly distributed integer strings as the input collection
for the three data structures. Particularly, we order these
inputs and divide them into five groups to obtain statistic
variance apart from the average query time over 50,000
independent experiments.

Table 2 shows the performance comparison among the
three data structures that can be used for prefix filter. Both
Set and Bloom filter exhibit stable query speed at the sub-
microsecond level in the course of our experiments while
delta-encoded table is hundreds of time slower and exhibits
significant variability in query speed as a consequence of
query-time recovery from the encoded delta in essence.
Moreover, we measure the heap used with the aid of V8
engine built-in library and it turns out the memory edge of
delta-encoded table is insignificant and difficult to optimize
in this high-performance JavaScript engine. From this, we
prefer Bloom filter in our prototype on account of the bal-
anced performance of query speed and memory footprint.
• Encrypted Blacklist. As introduced in Section 4.4, a

local copy of each encrypted blacklist D is reserved on
each user’s client to facilitate the encrypted matching op-
erations. Yet its implementation is rather straightforward.
Fundamentally a generic dictionary (i.e., Map in JavaScript)
is maintained to keep track of the encrypted key-value
pairs containing encrypted token (derived from the hash
of each unsafe URL) and the corresponding metadata in-
formation. In our current prototype, the metadata consists
of the threat type (e.g., malware, phishing, and others) and
the blacklist provider’s ID, represented as the integer type
for compression. Also, if the metadata is omitted, the Set
in JavaScript can hold the encrypted tokens. Here, we do
not consider the other space-efficient data structure, like
the above-mentioned Bloom filter and delta-encoded table,
because they either incur false positives or perform less
efficiently.

Handling Frequent Update. To ensure protection against
the latest threats, both F and D require regular updates once
the corresponding blacklist providers release the latest ver-
sions. Note that every update comprises not only the add op-

8. Unlike the exact detection scenario, the Bloom filter can be used
here as it is meant for filtering and consequentially allows tolerable
false positives.

eration associated with recently incorporated unsafe URLs,
but also the delete operation accountable for the removal of
outdated items. It is necessary that obsolete information in
D is removed timely by corresponding blacklist providers
in order to optimize client-side storage. Note that our design
naturally supports the two update operations owing to the
distinctness of the key-value pairs in D (see Section 4.2).
Besides, we use the standard Bloom filter as F in our current
prototype, which does not support the “delete” operation
and requires a full update. This is sufficiently efficient as
the size of hash prefixes in F is relatively small, say ≈1.86
MB for 50,000 hash prefixes loaded in self-managed V8
JavaScript engine. We are aware that the partial update
mode can also be made available by using some “dynamic”
Bloom filter at the cost of additional overhead [47].

6.1.2 Browser Extension

With the Chrome APIs, our extension is able to intercept the
connection request and check locally or interactively with
the PPSB server(s). For ease of exposition, we describe the
implementation details following client-side procedures.
• Adding Blacklist Provider(s). Once the user installs

the PPSB extension, a default blacklist source is included,
which is maintained by ourselves. For a quick switch to
other blacklist providers, we provide an options page as
shown in Fig. 5. The user only needs to fill in an address
of the corresponding PPSB server, which may be published
on the provider’s website. Any operation of add/delete of
blacklist provider(s) triggers an auto download/removal of
affected D and F.
• Pre-processing of URLs. As a starting point of de-

tection, each valid URL that follows RFC 2396 [48] is
canonicalized into a normalized format. Following the GSB
Update API, we use different combinations of the host
suffix and path prefix, as shown in Fig. 2, and treat each
of these expressions independently in the following pro-
cedure to prevent some potential dangerous URLs from
slipping through the net. Afterwards, the PPSB extension
computes full-length SHA-256 hashes and further truncated
32-bit hash prefixes, which are used for prefix filtering and
encrypted matching operations respectively.
• Server-Aided Token Generation. Once a hash prefix

sh is present in F, then its full-length hash h will be securely
transformed into encrypted tokens. Particularly, an interac-
tion with the PPSB server via the asynchronous WebSocket
call is performed to wrap up the OPRF protocol. In our
prototype, we implement EC-OPRF [18] on top of Stanford
JavaScript Crypto Library (SJCL) [49], which outperforms
other OPRF instantiations (e.g., RSA-OPRF [30]) in terms
of computation and bandwidth. At the end of the inter-
action, the extension obtains the authorized tokens (t1, t2)
for the later encrypted matching process. The actual HTTP
request/response body is shown in Fig. 8.
• Final Detection. Adhered to the description in Al-

gorithm 2, line 10 to 15, once corresponding metadata is
derived from the encrypted blacklist D, (i.e., the queried
URL is unsafe), the extension will redirect the current tab
to a warning page with information like the threat type and
the data source. If none such metadata is ever returned, the
web page will be loaded as usual.
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{
"x": "masked_token",
"m": true

}

Request
{
"y1": "signed_token",
"y2": "signed_token"

}

Response

Fig. 8. The request/response body in the server-aided OPRF token
generation in JSON. Here, “m” is true, indicating the encrypted blacklist
has the metadata field.

Optimization via Parallel Processing. To speed up the de-
tection procedure in the case of multiple blacklists, we lever-
age the asynchronous requests of Chrome to process the
above detection operations (except the URL pre-processing)
in parallel. Once a negative result (i.e., the URL is known un-
safe) is obtained, the detection procedure would be stopped
and the warning page would be popped up immediately.
Our testing results show that the extra overhead is modest
when adding more blacklists, see Table 3 in Section 7.2.

6.2 PPSB Server for Blacklist Providers

In our design, each blacklist provider maintains a PPSB
server, responsible for distribution of the encrypted blacklist
and token generation for the clients. Below introduces the
core APIs and a Docker-aided deployable prototype.

6.2.1 Exported API

The server-side API enables a blacklist provider to deploy
its own PPSB service. In the current prototype, we expose
a fully functional API in JavaScript, which contains the
following three major functions:
•K← GenKey(). It generates a pair of new secret keys

K = (k1, k2), which are used for building the encrypted
blacklist and generating the OPRF tokens.
• D ← BuildEncryptedBlacklist(K,B,meta). It out-

puts the encrypted blacklist D, which contains a collection
of encrypted key-value pairs, as shown in Algorithm 1. In
particular, the blacklist provider should prepare the URL
blacklist B in JSON format, e.g., [{“u”: “url string”, “m”:
metadata string} . . . ]. To keep the encrypted blacklist suf-
ficiently concise, the metadata m in our current prototype
only contains the threat type. Note that the other infor-
mative metadata, such as threat platform, attacking target,
and update time, could be involved in our future version,
since they can always be expressed in Strings. Here, the last
parameter meta (a Boolean value) indicates if the metadata
can be omitted.
• (Y1, Y2) ← SignToken(K, X). It takes the secret key

K = (k1, k2) and the masked token X as inputs, and
outputs the signed tokens (Y1, Y2) which can be unmasked
by the PPSB extension for later detection over the encrypted
blacklist. Note that, the masked token X is sent by the client
application, and the actual URL cannot be recovered (or
inferred) from this masked token, which is guaranteed by
the “oblivious” property of OPRF.

Apart from these, other functions like hash prefix extrac-
tion and data synchronization are also provided. Due to the
constrained space, we omit them here and more detailed
documentation could be found on GitHub.

A

All available encrypted blacklists

Version    Server Address #Records    Metadata    State           Operation

2.0 25,008 No Available

3.0           14,583          No   

http://phishtanktest.open
safebrowsing.com

http://phishtanktest.opensafebrowsing.com/admin#/index/dashboard …

Make Primary 

Remove

…

Primary
Version

http://phishtanktest.open
safebrowsing.com

PPSB
Menu ▾

• Dashboard

• New Blacklist

➤ Log out

…

Fig. 9. Web interface of PPSB server-side management.

6.2.2 Fast Deployment via Docker
To minimize the efforts for the blacklist providers to deploy
the PPSB service, we release a lightweight and stand-alone
Docker image to Docker Hub. Specifically, we use JavaScript
inside the Docker and leverage the SJCL library [49] with the
NIST P-256 elliptic curve to implement the EC-OPRF proto-
col. This docker image also provides a Web-based control
panel to facilitate the operations of upload, encryption, and
publication, as shown in Fig. 9. For simplicity, the involved
cryptography configuration is fixed in our current released
Docker image, i.e., updating the parameters needs to up-
date the Docker image. To make this update more flexible,
we plan to provide an interface to enable the operator to
change such parameters dynamically and synchronize the
new setting to end-users automatically.

To further improve the scalability when handing a
huge number of requests, we also provide another cluster
setup. It involves an extra load balancer (Nginx [50] or
HAProxy [51]) to manage multiple PPSB backend services,
automatically.

6.3 Limitations in Current Prototype

Though the design principle and workflow of our proposed
PPSB service are independent of particular web browsers,
the current APIs for client applications are in the JavaScript
language and the current prototype is in the form of the
Chrome extension, which does not support mobile devices.
As future work, we will implement the APIs in more lan-
guages, e.g., the Go APIs or the Python APIs, and explore
the possibility to port the PPSB to mobile platforms, e.g.,
Android and iOS. However, implementing PPSB on mobile
devices, compared to desktop computers, faces different
engineering efforts and new challenges. Our goal is to intro-
duce PPSB in minimally-intrusive fashion. Accordingly, we
use a browser extension for desktop computers. However,
for mobile browsers, major vendors currently do not sup-
port third-party extensions. Thus, it would require building
another native browser app from scratch. It is in our future
roadmap, and we are yet to address the energy cost, limited
storage, and other mobile constraints. With that said, we
believe our desktop PPSB does have value. Firstly, desktop
traffic still amounts to half of all browser traffic today [52].
Secondly, our design builds solid foundations for mobile
PPSB platform, a necessary next step.

Meanwhile, we would explore other recently popular
approaches like homomorphic encryption [53], [54] and
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hardware enclaves (i.e., Intel SGX) [55], [56] for support-
ing even more advanced computation over encrypted data
while maintaining the efficiency.

Besides that, in the current starting stage, we only in-
clude two blacklist providers, i.e., PhishTank [15] and Mal-
wareDomains [16], and the servers are maintained by our-
selves. In the near future, we hope more blacklist providers
would join our platform and provide more update-to-date
and platform-specific9 blacklists, so as to boost the capability
of safe browsing.

7 EXPERIMENTAL EVALUATION

To see the performance overhead of our PPSB prototype, we
conduct the following experiments to answer the two ques-
tions: First, what is the overhead of our introduced operations,
e.g., the prefix filtering and the query of the encrypted database
when the prefix is matched, to the client application (i.e., the
Chrome extensions)? Second, what is the overhead of our system
to the blacklist server, since it needs to generate the OPRF tokens,
and periodically build the encrypted database of unsafe URLs?

7.1 Setup
First of all, we deploy three PPSB servers acting as the role
of three independent blacklist providers on three AWS EC2
instances “c5.large” (2 vCPU with 4 GB RAM) in Linux
(Ubuntu Server 16.04 LTS). Precisely, three real datasets
are used respectively in each instance: B1 - PhishTank [15]
that contains 14,583 verified unsafe URLs; B2 - MalwareDo-
mains [16] that contains 27,013 malware domains; and B3
- Shallalist [23] that contains 1,571,617 unsafe domains10.
Hereinafter, we will not differentiate between “URL” and
“domain” as they both are expressed by way of a string.

Second, the client-side performance is evaluated on a
MacBook Pro (2.6 GHz Intel Core i7 with 16 GB RAM). Here,
we study three scenarios in terms of the number of blacklist
providers added in the PPSB extension. For comparison,
we also test the latest Chrome 73 (official build 64-bit) with
the built-in GSB service11 and the recently released Chrome
extension by Microsoft, namely Windows Defender Browser
Protection (abbr. MSB) [20]. Without further elaboration, 10
individual experiments are performed to derive the average
results in the following figures and tables.

Last but not least, the communication between PPSB
extension and server (e.g., the encrypted blacklist synchro-
nization and server-aided token generation) is reliably au-
thenticated by using HTTPS.

7.2 Client Application
To answer the first question, we measure the latency when
accessing unsafe and safe URLs with our PPSB extension.

9. Aware that threats are sometimes posed to a specific platform, e.g.,
Windows, macOS, and Linux, we suggest subdividing the blacklist
according to the targeted platforms as this can further reduce the
memory footprint of the local database.

10. The Shallalist has over 1.7 million domains and URLs, some of
which are outdated or invalid. Here, we just use 1.5 million domains to
evaluate the performance when PPSB faces a big dataset (e.g., the same
scale as GSB).

11. To disable the GSB service in Chrome 73, users need to switch off
the “Safe Browsing” option under the “Privacy and security” settings.

TABLE 3
Average load time of random unsafe URLs for three safe browsing

services on major platforms.

Platform
GSB

(ms)

MSB

(ms)

PPSB w/

B1 (ms)

PPSB w/

B1,2 (ms)

PPSB w/

B1,2,3 (ms)

Windows 112.6 116.8 333.5 388.1 437.7

macOS 184.7 194.3 340.5 373.3 440.1

Ubuntu 67.6 155.4 329.7 354.3 431.1

Note: B1 - PhishTank, B2 - MalwareDomains, B3 - Shallalist.

TABLE 4
Average load time of random unsafe URLs when handling three user

requests simultaneously.

#Users
PPSB w/

B1 (ms)

PPSB w/

B1,2 (ms)

PPSB w/

B1,2,3 (ms)

1 340.5 373.3 440.1

2 346.1 382.6 448.2

3 353.9 388.5 455.4

Note: B1 - PhishTank, B2 - MalwareDomains, B3 - Shallalist.

Comparable Speed with Other SB Services. First, we mea-
sure the initial load time of the prefix filter and encrypted
blacklist from the default blacklist source (i.e., MalwareDo-
mains, which can also be removed by the user). The average
load time is about 750 ms, which is a one-time cost for each
update of the default source. Meanwhile, we want to point
out that our PPSB extension does not incur a noticeable
delay when launching Chrome, just around 67 ms latency.

Moreover, to measure the load time of warning pages
in case of accessing unsafe URLs, we randomly select 10
URLs that can be blocked by all the three SB services (i.e.,
GSB, MSB, PPSB), and test them on the latest stable version
of Windows 10, macOS High Sierra, and Ubuntu 16.04. We
use the following method to measure the load time with
the help of Chrome exported APIs. Specifically, we mark
the start time when Chrome is about to start a navigation
event, and obtain the end time with the help of updated tab
information. We then calculate the interval between these
two Chrome built-in events as the load time of the unsafe
URL. We take a similar method to calculate the load time of
a safe URL.

Table 3 illustrates the average load time for different
SB services on major OS platforms to load unsafe URLs
(and being blocked). Due to the extra introduced operations
(see the left part of Table 5), our PPSB prototype exhibits
consistent overhead on all platforms. However, the load
time is still at the millisecond level (less than 500 ms)
and completely acceptable and doubtlessly unnoticeable12

compared with the average page load times in 2018 (at the
second level) [57]. And owing to the parallel computing
techniques used on the client side, the scenario of PPSB with
all the three providers incurs about 100 ms extra time cost
on the basis of PPSB with one provider. This suggests the

12. Users are welcome to send us online feedback via https://goo.
gl/forms/0I2KZX88cRv6AgJA3. As of now, we have received feedback
from over 35 volunteers in our university, where the summary can be
found at https://goo.gl/hFjL7o.

https://goo.gl/forms/0I2KZX88cRv6AgJA3
https://goo.gl/forms/0I2KZX88cRv6AgJA3
https://goo.gl/hFjL7o
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TABLE 5
Evaluation of the major operations in server-aided token generation.

PPSB Extension

PrefixF ilter

(µs)
Mask

(ms)
Unmask

(ms)

0.722 62.51 27.76

PPSB Server

SignToken

(ms)

125.28 (w/ metadata)
58.36 (w/o metadata)
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Fig. 10. Evaluation of the average load time of five famous (safe)
websites (100 individual tests).

gentle linear growth of block time as the number of added
blacklist providers increases gradually on the client side,
which is an inevitable cost for the benefit of obtaining more
comprehensive information from multiple sources. Besides
that, Table 4 shows the average load time when three users
access different unsafe URLs simultaneously and only a
PPSB Docker instance handles all of them. We can observe
that the average load time for each end user is not increased
significantly thanks to the server-side parallel processing
(see more discussion in Section 7.3).

We further evaluate the load time of safe URLs. Fig. 10
shows the load time of the five most frequently visited
websites [58] in a real network environment by using a
new anonymous Chrome test account with cache cleared.
Here, the “Baseline” indicates the case that all SB services
are disabled. As is evident from the results, similar to the
GSB and MSB, our PPSB extension only introduces little
overhead (e.g., 11 ms to 55 ms) in all three usage scenarios
thanks to the fast-processing of local filter (about 0.722 µs for
each query) for the vast majority of safe websites. Note that
YouTube, as a typical content-heavy website (with more data
to be loaded), needs a longer time than others, and Facebook
is even faster than search engines as it only displays the
login page in our test.

In summary, our PPSB prototype does introduce extra
overhead as expected. However, the overhead of load time
of unsafe URLs is within the millisecond level, and that
of safe URL is unnoticeable in contrast with the dominant
factors like network fluctuations.

7.3 PPSB Server

The PPSB server needs to build the encrypted blacklist and
generate the OPRF tokens. Now, we evaluate the perfor-
mance overhead caused by these two operations.

Server-Aided OPRF Token Generation. When there is a
match in the local prefix database, the client application
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Fig. 11. Estimation of the number of SB requests per second that our
PPSB server can support.
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Fig. 12. Estimation of the average latency for a client getting the autho-
rized token under the influence of increasing scale of URL queries on a
single Docker instance.

will generate a mask token and sends it to the server. The
server then generates the OPRF token and returns it to
the client for looking up in the encrypted blacklist. Since
this operation is computation-intensive, it is the most time-
consuming operation on the server side. Table 5 also shows
the time used to generate the token(s) for each query in
accordance with the existence of metadata.

Moreover, we estimate the number of safe browsing
requests that our PPSB service can handle. First, we calculate
the number of requests that the PPSB server can process
in a second. The main bottleneck is in the time-consuming
generation of the OPRF token. We obtain this number using
the JMeter [59], and we denote this number as Nps. Second,
our PPSB server only gets involved when there is a match
in the prefix filtering, either because the URL is unsafe, or
the prefix of the hash value of the URL happens to be in
the local prefix database. Remember that, the local prefix
database contains the 32-bit prefix of the hash value of
unsafe URLs, and there is a chance that the benign URL
finds a match in the database. To this end, we use the URLs
from Top 1 Million Sites [24], together with the randomly
selected unsafe URLs from blacklist providers, to measure
the number of matches of these URLs in the local prefix
database. We deliberately set the percentage of unsafe URLs
from 1% to 0.01% to understand the situations in different
scenarios. We use Ntotal and Nmatch to denote the number
of total URLs and the number of matches in the local prefix
database. Third, we calculate the result based on the follow-
ing equation: Ntotal·Nps

Nmatch
. Fig. 11 shows the estimated number

of safe browsing requests in one second that one PPSB
server can support (y-axis) in different percentage of unsafe
URLs (x-axis). Note that the real percentage of unsafe URL is
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even less than 0.05% reported by Google [40], and our PPSB
service can support a large scale requests in this scenario.
In addition, Fig. 12 further shows the average latency under
the influence of increasing scale of URL queries on a single
server instance. We can observe that more requests could be
transparently supported by using more threads. Here, we
emphasize that the server-side operation is necessary for
protecting blacklist providers’ proprietary assets (the list of
unsafe URLs).
Preparation of the Encrypted Blacklist and Hash Prefixes.
We also evaluate the preparation time and the size of the
encrypted blacklist and the hash prefixes in our current
prototype. Regarding the three real datasets, PPSB servers
spend 12 minutes for 14,583 records from PhishTank, 25
minutes for 27,013 records from MalwareDomains, and
1,015 minutes for 1.5 million records in Shallalist when
using a single thread, where the prepared data are 1.11 MB,
2.79 MB, and 119.5 MB, respectively. Specifically, Fig. 13
shows the preparation time of the Shallalist in a single
thread, which is at the same million level as GSB [40].
We emphasize that this is a one-time cost for each batch
of unsafe URLs and can be further accelerated via server-
side parallel computing. Fig. 14 shows the size of prepared
data (i.e., the encrypted blacklist and its corresponding hash
prefixes) in the uncompressed JSON format. We particu-
larly choose JSON format for quick loading and processing
in JavaScript. To reduce the bandwidth consumption, we
further integrate the data compression technique (i.e., gzip)
into PPSB service, so the actual transmitted data are about
0.61 MB, 1.34 MB and 65.5 MB for the three sources. Al-
though this inevitably introduces extra client-side overhead
for data decompression, it is indeed fast and unnoticeable,
say less than 20 ms for 1.34 MB and 670 ms for 65.5 MB.

In summary, our PPSB prototype on the server side can
support a relatively large scale of safe browsing requests,
even in the case of two threads. As a future direction,
we will continue to find ways to accelerate the speed of
building encrypted blacklist and generating OPRF tokens,
e.g., refactoring the server-side code in C++ or Go.

8 RELATED WORK

Popular Safe Browsing Services. Our work is closely
related to existing SB services adopted by popular web
browsers [3], [4], [5], [21], [25]. First, the GSB has a huge
impact on several influential browsers. Its current version
(v4) consists of the Lookup API and Update API. Particu-
larly, the Lookup API receives the URL in cleartext on the
server side, which accentuates the privacy concern in spite
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Fig. 15. The growing user base of the Chrome extension “Windows
Defender Browser Protection” from Microsoft since its first release in
April 2018.

of its simplicity. The Update API endeavors to strengthen
protection on users’ privacy to some extent by infrequently
sending 4- to 32-byte hash prefixes of URLs that have passed
through the local filter with the server. This Update API is
adopted by Chrome, Firefox [9], Safari [10], etc.

Besides that, Windows Defender SmartScreen has also been
integrated with several Microsoft products such as Edge,
IE, and the Windows operating system since its initial
release in IE7 [4]. Roughly the same procedures are per-
formed within the extension and those Microsoft products.
Although Microsoft stated that sensitive information shared
with Microsoft would not be abused to identify, contact or
target advertising to the user [60], [61], [62], URLs beyond
the scope of a client-side whitelist (that contains a list of safe
URLs) are visible to Microsoft.

Moreover, Fraud and Malware Protection has been featured
in Opera since its early version 9.10 [21]. Prior to Opera
9.50, the domain name of the URL was required to be sent
to Opera’s server in cleartext, together with a hash of the
full URL, which would be checked against some lists of
unsafe URLs provided by the third-party blacklist providers
GeoTrust and PhishTank [63]. In its subsequent releases,
Opera kept this service flow but renewed the blacklist
providers from time to time [7], [63], [64], e.g., GeoTrust [65],
PhishTank [15], Netcraft [26], and TRUSTe [66]. Note that
many recent reports indicate that Opera is now using the
GSB, just like Firefox and Safari [12], [67].

In addition, Yandex Safe Browsing (YSB) is another known
SB service, adopted by the Yandex Browser [25]. YSB follows
basically the same procedures as the GSB, but includes its
own blacklists other than Google’s [12], [68].

Despite the pre-stated privacy policy statement associ-
ated with all these widely adopted SB services, potential
vulnerability of URL re-identification can be abused by
leveraging the shared information [12], [13] as mentioned
before.

Searchable Encryption. Our current design leverages the
similar idea of searchable encryption (SE) techniques to
store the encrypted blacklist and to perform detection on
users’ client. In principle, most SE schemes surveyed in [69]
and many recent ones (e.g., [37], [38], [39]) are applicable
to build encrypted yet queryable blacklist as used in our
design, explicitly the case with metadata. These SE schemes
(just to name a few) focus on improving locality and
throughput [19], supporting boolean queries [32], [70] and
similarity queries [71], [72], and ensuring forward (and/or
backward) security in the dynamic update [37], [38], [39].
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To the best of our knowledge, we are the first that apply
this technique to the safe browsing scenario. To keep a
small memory footprint, we customize the efficient scheme
proposed by Cash et al. [19], which is based on a simple yet
generic dictionary. Different from its the original scheme,
we incorporate an OPRF protocol to enable the client-side
extension to perform detection locally, without revealing
the private inputs to other parties, i.e., the secret key of the
blacklist provider and the queried URLs of the users.

9 CONCLUSION

PPSB is an open and flexible platform for safe browsing with
the guaranteed privacy of users and blacklist providers. In
PPSB, the URLs (or even the hash prefixes) to be checked (or
vetted) never leave the browser in cleartext. The third-party
blacklist providers can contribute their update-to-date lists
of unsafe URLs in a private and easy manner. And users
can switch different blacklist providers flexibly and obtain
updated blacklists automatically. The comprehensive eval-
uation of our full-fledged and easy-to-use prototype with
real datasets demonstrated the efficiency and effectiveness
of our design. All the resources, such as code, extension, and
Docker image, are available for public use.
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