Towards a First Step to Understand the Cryptocurrency Stealing Attack on
Ethereum

Zhen Chengl’z*, Xinrui Hou?**, Runhuai Lil?, Yajin Zhou!'2%, Xiapu Luo?, Jinku Li* and Kui Ren'?

1Zhejiang University
2 Alibaba-Zhejiang University Joint Research Institute of Frontier Technologies
{iimp,lirunhuai,yajin_zhou,kuirenj@zju.edu.cn
3The Hong Kong Polytechnic University
csxluo@comp.polyu.edu.hk
*Xidian University
xrhou@stu.xidian.edu.cn, jkli@xidian.edu.cn

Abstract

We performed the first systematic study of a new attack
on Ethereum that steals cryptocurrencies. The attack is due
to the unprotected JSON-RPC endpoints existed in Ethereum
nodes that could be exploited by attackers to transfer the
Ether and ERC20 tokens to attackers-controlled accounts.
This study aims to shed light on the attack, including mali-
cious behaviors and profits of attackers. Specifically, we first
designed and implemented a honeypot that could capture
real attacks in the wild. We then deployed the honeypot
and reported results of the collected data in a period of six
months. In total, our system captured more than 308 mil-
lion requests from 1,072 distinct IP addresses. We further
grouped attackers into 36 groups with 59 distinct Ethereum
accounts. Among them, attackers of 34 groups were stealing
the Ether, while other 2 groups were targeting ERC20 tokens.
The further behavior analysis showed that attackers were
following a three-steps pattern to steal the Ether. Moreover,
we observed an interesting type of transaction called zero gas
transaction, which has been leveraged by attackers to steal
ERC20 tokens. At last, we estimated the overall profits of
attackers. To engage the whole community, the dataset of cap-
tured attacks is released on https://github.com/zjuicsr/eth-
honey.

1 Introduction

The Ethereum network [38] has attracted lots of attentions.
Users leverage this platform to transfer the Ether, the offi-
cial cryptocurrency of the network, or build DApps (decen-
tralized applications) using smart contracts. This, in turn,
stimulates the popularity of the Ethereum network.
However, this popularity also attracts another type of
users, i.e., attackers. They exploit the insecure setting of
Ethereum clients, e.g., Go-Ethereum [7] and Parity [12], to
steal cryptocurrencies. These clients, if not properly config-

*Co-first authors with equal contribution.
Corresponding author.

ured, will expose a JSON-RPC endpoint without any authen-
tication mechanism enforced. As a result, they could be re-
motely reached by attackers to invoke many privileged meth-
ods to manipulate the Ethereum account, on behalf of the
account holder who is using the client . Though we have seen
spot reports of stealing the Ether by hackers [11,15], there
is no systematic study of such an attack. In order words, not
enough insights were provided on the attack.

To this end, we performed a systematic study to under-
stand the cryptocurrency stealing attack on Ethereum. The
purpose of our study is to shed lights on this attack, includ-
ing detailed malicious behaviors, attacking strategies, and
attackers’ profits. Our study is based on real attacks in the
wild captured by our system.

Specifically, we designed and implemented a system called
Siren. It consists of a honeypot that listens the default JSON-
RPC port, i.e., 8545, and accepts any incoming requests. To
make our honeypot a reachable and valuable target, we reg-
ister it as an Ethereum full node on the Internet and prepare
a real Ethereum account that has Ethers inside. In order to
implement an interactive honeypot, we use a real Ethereum
client (Go-Ethereum in our work) as the back-end. We then
redirect all the incoming RPC requests to the back-end, ex-
cept for those that may cause damages to our honeypot. Our
honeypot logs the information of the request, including the
method that the attacker intends to invoke, and its parame-
ters. For instance, our honeypot logs account addresses that
attackers intend to transfer the stolen Ether into. We call
these accounts as malicious accounts. We further crawl
transactions from the Ethereum network and analyze them
to identify suspicious accounts, which accept Ethers from
malicious accounts. Though we are unaware of real owners
of these accounts, they are most likely to be related to at-
tackers since transactions exist from malicious accounts to
them. We then estimate attackers’ profits by calculating the
income of malicious and suspicious accounts.

INote that, the RPC interface is intended to be used with proper authen-
tication.

Findings We performed a detailed analysis on the data
collected in a six-month period ?. Some findings are in the
following.

« Attacks captured During a six-month period, our
system captured 308.66 million RPC requests from
1,072 distinct IP addresses. Among these IP addresses,
9 of them are considered as the main source of attacks,
since they count around 83.8% of all requests. One
particular IP address 89.144.25.28 sent the most RPC
requests, with a record of 101.73 million requests in
total. In order to hide their real IP addresses, attackers
were leveraging the Tor network [20] to launch attacks.
We also observed that some IP addresses of worldwide
universities were probing our honeypot, though none
of them were invoking methods to steal cryptocurren-
cies. Most of these IP addresses are from the PlanetLab
nodes [13].

« Cryptocurrencies targeted We grouped attackers
based on IP addresses and target Ethereum accounts.
These accounts are the ones that attackers transferred
the stolen cryptocurrencies into. In total, attackers are
grouped into 36 clusters with 59 distinct malicious
accounts. Among them, attackers of 34 groups were
stealing the Ether, while other 2 groups were targeting
ERC20 tokens.

« Steal the Ether We observed that attackers were fol-
lowing a three-steps pattern to steal the Ether. They
first probed potential victims, and then collected nec-
essary information to construct parameters. After that,
they launch the attack, either passively waiting for the
account being unlocked by continuously polling the
account state, or actively lunching a brute-force attack
to crack the user’s password to unlock the account.

. Steal ERC20 tokens Besides the Ether, attackers
were also targeting ERC20 tokens. We observed a type
of transaction called zero gas transaction, in which the
sender of a transaction does not need to pay any trans-
action fee. We find that attackers were leveraging this
type of transactions to steal tokens from fisher accounts
that intended to scam other users’ Ethers, and exploit-
ing the AirDrop mechanism to gain numerous bonus
tokens.

Contributions In summary, this paper makes the follow-
ing main contributions:

+ We designed and implemented a system that can capture
real attacks to steal cryptocurrencies through unprotected
JSON-RPC ports of vulnerable Ethereum nodes.

“The dataset is released on https://github.com/zjuicsr/eth-honey.

« We deployed our system and reported attacks observed in
a period of six months.

« We reported various findings based on the analysis of col-
lected data. The dataset is released to the community for
further study.

The rest of the paper is structured as the follows: we intro-
duce the background information in Section 2 and present
the methodology of our system to capture attacks in Sec-
tion 3. We then analyze the attack in Section 4 and estimate
profits in Section 5, respectively. We discuss the limitation
of our work in Section 6 and related work in Section 7. We
conclude our work in Section 8.

2 Background

In this section, we will briefly introduce the necessary back-
ground about the Ethereum network [38] to facilitate the
understanding of this work.

2.1 Ethereum Clients and the JSON-RPC

An Ethereum node usually runs a client software. There exist
several clients, e.g., Go-Ethereum and Parity. Both clients
support remote procedure call (RPC) through the standard
JSON-RPC API [4]. When these clients are being started with
a special flag, they will listen a specific port (e.g., 8545), and ac-
cept RPC requests from any host without any authentication.
After that, functions could be remotely invoked on behalf of
the account holder of the client, including privileged ones to
send transactions (or transfer cryptocurrencies). Note that,
though the Ethereum network is a P2P network, attackers
can discover and reach vulnerable Ethereum nodes directly
through the HTTP protocol.

2.2 Ethereum Accounts

On the Ethereum platform, there exist two different types
of accounts. One is externally owned account (EOA), and
another one is smart contract account. An EOA account
can transfer the Ether, the official currency in Ethereum,
to another account. An EOA account can deploy a smart
contract, which in turn creates another type of account, i.e.,
the smart contract account. A smart contract is a program
that executes exactly as it is set up to by its creator (the
smart contract developer). In Ethereum, the smart contract
is usually programmed using the Solidity language [14],
and executes on a virtual machine called Ethereum Vir-
tual Machine (EVM) [38]. Both types of accounts are de-
noted in a hexadecimal format. For instance, the account ad-
dress 0x6ef57be1168628a2bd6c5788322a41265084408a de-
notes an (attacker’s) EOA account, while the address
0x87c9ea70f72ad55a12bc6155a30e047cf2acd798 denotes a
smart contract.

ERC20 tokens [1] are digital tokens designed and used on
the Ethereum platform, which could be shared, exchanged
for other tokens or real currencies, e.g., US dollars. The com-
munity has created standards for issuing a new ERC20 token
using the smart contract. For instance, the smart contract
should implement a function called transfer() to transfer
the token from one account to another, and a balance0f ()
function to query the balance of the token. The values of
ERC20 tokens vary for different tokens at different times.
For instance, the market capitalization of the Minereum to-
ken [8] was more than 7 million US dollars [9] in August,
2017, and is around 40,000 US dollars in March, 2019.

2.3 Transactions

Transactions can be used to transfer the Ether, or invoke
functions of a smart contract. Specifically, the to field of a
transaction denotes the destination, i.e., an EOA account
or a smart contract. For a transaction to send the Ether,
fields including gas and gasPrice specify the gas limit
and the gas price of the transaction. Listing 1 (Section 4
on page 5) shows a real transaction to send the Ether
to 0x63710c26a9be484581dcaclaacdd95ef628923ab, a mali-
cious EOA account captured by our system. If the transaction
is used to invoke a function of a smart contract, then the data
field specifies the name and parameters of the function to be
invoked. Note that, a function is identified by a function sig-
nature, i.e., the four bytes of the Keccak hash of the canonical
expression of the function prototype, including the function
name, the parameter types. Listing 2 and 3 (Section 4 on
page 6) shows the data field and the signature of the invoked
function and its prototype.

Sending a transaction consumes gas, which is the name
of the unit that measures the work needs to be done. It is
similar to the use of a liter of fuel consumed when driving
a car. The actual cost of sending a transaction (transaction
fee) is calculated as the product of the consumed gas and
the current gas price. The gas price is similar to the cost of
each liter of fuel that is paid for filling up a car. The smallest
unit of the Ether is Wei. A Gwei consists of a billion Wei,
while an Ether consists of a billion Gwei. The amount of gas
consumed in a transaction is accumulated during instruction
execution. Since the operation of transferring the Ether is
a sequence of fixed instructions, thus the consumed gas is
always 21,000.

The transaction fee is paid by the sender to the miner,
who is responsible for packing transactions into blocks and
executing smart contract instructions. To earn a higher trans-
action fee, miners tend to pack the transaction with a higher
gas price. Specifically, the sender of a transaction can specify
the gas price in the field gasPrice (Section 4 on page 5) to
boost the chance of the transaction being packed. We have
observed a trend of higher gas price in the transactions to
steal Ether (Figure 3 on page 8).

. -
N
/ Ethereum | 1
I o Lo
H Transactions | !
H Database | !
! Bthereum Network b base | '
| 4 i
o X '
— ! : ttackand | |
Request © Logsand: . 0
H que | <08 : Transaction [———Results
\ Recording i Database : .
<—er H---—-— 7 | il i Analysis

Attacker

R sponsc'
\ |_Forwarding

'
'
1
'
'
'
'
'
I
i

i
i
i
| Requestand
i
.

\

Figure 1: The overview of our system.

There are multiple RPC methods that could be re-
motely invoked to send (or sign) a transaction on behalf
of the account holder, including eth_sendTransaction and
eth_signTransaction. Note that the account needs to be
unlocked before sending a transaction. This involves the
process to enter the user’s password. Otherwise, the invo-
cation of these methods will fail. In other words, in order to
successfully steal the Ether from the victim’s account, his
or her account should be in the state of being unlocked. In
Section 4.3, we will show that attackers continuously moni-
tor the victim’s account until it is unlocked by the user, or
launch a brute-force attack using a predefined dictionary of
popular passwords.

3 Methodology

Figure 1 shows the architecture of our system. In order to cap-
ture real attacks towards Ethereum nodes with unprotected
HTTP JSON-RPC endpoints, we design and implement a sys-
tem called Siren. Our system consists of a honeypot that
listens the default JSON-RPC port, i.e., 8545. Any attempt
to connect to this port of our honeypot will be recorded.
Our system forwards the request to the back-end Ethereum
client(@®) and returns the results (@). The Ethereum client
used in our system is the Go-Ethereum *. Our honeypot logs
the RPC requests with parameters from the attacker, and
then imports them into a database(®). To further estimate
profits of attackers, we crawl transaction records from the
Ethereum network (@), and identify suspicious accounts that
are connected with attacker’s accounts. Our system combines
the transaction records (@) of both malicious and suspicious
accounts to generate the final result (®).

3.1 Ethereum Honeypot

In order to capture real attacks and understand attacking be-
haviors, we build a honeypot. It can interact with JSON-RPC
requests that invoke APIs for malicious intents, e.g., transfer-
ring the Ether to attacker controlled malicious accounts. Our

3In this paper, if not otherwise specified, the Ethereum client we dis-
cussed is the Go-Ethereum.

honeypot logs the information of the API invocation, includ-
ing the method name, parameters and etc., for later analysis.
Moreover, our system confines the attacker’s behaviors that
APIs invoked cannot cause real damages to our honeypot.

To this end, we design a front-end/back-end architec-
ture for our honeypot. Specifically, we implement a front-
end that listens to the 8545 port and accepts any incoming
HTTP JSON-RPC request from this port. We also have a
real Ethereum client in the back-end, which runs as a full
Ethereum node. This client accepts any local JSON-RPC re-
quest from the front-end. That means our real Ethereum
client is not publicly available to the attackers. If the invoked
API is inside a predefined whitelist, our front-end will for-
ward the request to the back-end client, and then forward
the response to the attacker. The APIs might bring a finan-
cial loss to our account are strictly forbidden. By doing so,
our system protects the Ethereum node from being actually
exploited, while at the same time, facilitates the informa-
tion logging of the requests since all the requests need to go
through the front-end.

However, there are several challenges that need to be ad-
dressed to make the system effective. For instance, the hon-
eypot should behave like a real Ethereum node. Otherwise,
attackers could be aware the existence of our honeypot and
do not perform malicious activities. In the following, we will
illustrate ways that our system leverages to attract attackers,
and further describe how our honeypot works.

Respond the probe requests The default port number
of the HTTP JSON-RPC service of an Ethereum node is 8545.
Before launching a real attack, attackers usually send probe
requests to check whether this port is actually open. For in-
stance, the attacker invokes the web3_clientVersion method
to check whether it is a valid Ethereum node. The front-end
of our honeypot accepts any incoming JSON-RPC request,
and responds with valid results, by relaying responses from
the back-end Ethereum client.

Advise the existence of our Ethereum node In order
to capture attacks, our system needs to attract attackers.
There are two options for this purpose. One option is that we
passively wait for attackers by responding to the probing re-
quest. However, this strategy is not efficient since the chance
that our honeypot is happened to be scanned is low, given
the large space of valid IP addresses. The second option is to
actively attract attackers. Specifically, to make our Ethereum
node (or our honeypot) visible to attackers, we register it on
public websites that provide the list of full Ethereum nodes.
The original purpose of this list is to speed up the discovery
process of Ethereum nodes in the P2P network. However,
this list provides valuable information to attackers, since
they can find potential targets without performing time- and
resource-consuming port scanning process. It turns out this
strategy is really effective. Our honeypot receives incoming
probe requests shortly after being registered on the list.

Pretend as a valuable target The main purpose of
the attack is to steal cryptocurrencies. In order to make
the attacker believe our honeypot is a valuable target,
we create a real Ethereum account with the address
0xa33023b7c14638£3391d705c938ac506544b25¢3 and trans-
fer some amounts of Ether into this account. Since the
Ethereum network is a public ledger, the amount of the Ether
inside the account could be obtained by querying on the
network. Our honeypot returns this account address to at-
tackers if they invoke the eth_accounts method to get a list
of accounts owned by our Ethereum node. We also return
the real amount of Ether inside this account to attackers if
the eth_getBalance method is invoked.

Emulate a real transaction After obtaining the informa-
tion of the account owned by our Ethereum node and the bal-
ance of the account, attackers tend to steal the Ether by trans-
ferring it to accounts they controlled (malicious accounts).
For instance, they could invoke the eth_sendTransaction
method, which returns the hash value of a newly-created
transaction. Attackers could check the return value of the
method invocation to get the status of Ether transfer. To
make the attacker believe that the transaction is being pro-
cessing, while not actually transferring any Ether from our ac-
count, we do not actually execute the eth_sendTransaction
method. Instead, we log the parameters of this method invo-
cation, and return a randomly generated hash value to the
attacker.

Log RPC requests Our honeypot logs the attacker’s in-
voked methods, including the method name, parameters,
along with the metadata of the attack, such as the IP ad-
dress and the time. All the data will be saved into a log file,
which will be imported into a database.

3.2 Data Collection and Analysis

After capturing attacks and malicious account addresses, we
will estimate profits gained by attackers. Our system lever-
ages transactions launched from these accounts to find more
attacker-controlled accounts. For this purpose, we crawl the
whole transactions from the Ethereum network.

Our system first downloads Ethereum transactions, then
imports them into a database. After that, we can conveniently
combine data captured by our honeypot and transactions
from the Ethereum network to generate final analysis results.

4 Attack Analysis

In this section, we will illustrate the data we collected, the
grouping process of attackers, and detailed information about
attacks to steal the Ether and ERC20 tokens.

—— RPC requests

9,000,000 - Distinct IP addresses

8,000,000 1 "

()

@ 7,000,000 160 2

2 g
140

2 6,000,000 1 3

t120 4

o
5 5,000,000
a

-
o
S

of distinct

< 4,000,000 4
<}

T
©
o

3,000,000 -
2,000,000
1,000,000 -

L _____ A
O WD O S DO
WA

T
N B O
o o ©

T T T T T T 0
Q \J N >] “J >
R R RPN

Figure 2: The number of daily RPC requests and distinct IP
addresses captured by our honeypot. The seven red circles
mean the data in these days is incomplete, either because
our system was accidentally shut down, or the network was
not stable.

4.1 Data Overview

We deployed our system on a virtual machine in Alibaba
cloud, and collected the data in a period of six months, i.e.,
from July 1 to August 31 in the year 2018, and November
1, 2018 to February 28, 2019. Unfortunately, there are three
days (from July 24 to July 26) when the virtual machine was
accidentally shut down, and four days (July 14, 15, 27 and
30) when the network was not stable. During these days,
the data is either missing or incomplete. Figure 2 shows the
number of daily RPC requests and distinct IP addresses of
these requests.

In total, our system observed 308.66 million RPC requests
from 1,072 distinct IP addresses. In average, we received 1.72
million RPC requests each day (excluding the incomplete
data.) In terms of IP addresses, the average daily number is
62. This number reached its peak value (142) on December
24, 2018.

Among these RPC requests, 9 different IP addresses are
main sources of attacks, given that they contribute most
of RPC requests in our dataset. These 9 IP addresses sent
around 258.70 million requests in total, which counts around
83.8% of all requests. It’s worth noting that, the IP address
89.144.25.28 sent the most RPC requests. It sent 101.73 mil-
lion requests in total, accounting for 33.0% of the requests
we received. We believe such an aggressive behavior is to
increase the possibility of stealing the Ether, since the time
window to transfer the Ether only exists when the user ac-
count is unlocked. We also observed that attacks from this
IP address ceased in several days, e.g., from August 15 to 17.

RPC requests from universities worldwide Interest-
ingly, some RPC requests are from IP addresses that belong
to universities. Specifically, our honeypot received requests
from 66 IP addresses of 39 universities in 13 countries or
regions. Among them, 37 IP addresses are from universities
in the USA. For instance, two IP addresses (146.57.249.98

// Date: Jul 1 20:44:09 GMT+08:00 2018
// Source IP: 89.144.25.28
{
"jsonrpc": "2.0",
"method": "eth_sendTransaction",
"params": [{
//The account address of our honeypot.
"from": "0xa33023b7c14638£3391d705c938ac506544b25¢c3"
//Attacker's account address.
"to": "0x63710c26a9be484581dcaclaacdd95e£628923ab",
"gas": "0x5208",
"gasPrice": "0x199c¢82cc00",
"value": "0x2425f024b7£d000",
31,
"id": 739296

Listing 1: The captured attack and the associated account
address in the to field.

and 146.57.249.99) belong to the University of Minnesota.
We further used the reverse DNS lookup command to ob-
tain the domain name associated with these IP addresses.
It turns out that all of them are associated with the Plan-
etLab [13]. For instance, the domain names of the pre-
vious two IP addresses are planetlabl.dtc.umn.edu and
planetlab2.dtc.umn.edu, respectively. Requests from these
IP addresses are not performing malicious activities, e.g.,
transferring the Ether to other accounts. Most of them are
merely probing our honeypot for information collection, e.g.,
invoking eth_getBlockByNumber. Though the exact inten-
tion of collecting such information is unknown, we believe
these requests are mainly for a research purpose.

Abuse of the Tor network and cloud services Attack-
ers are leveraging the Tor network and cloud services to
hide their identities. For instance, some IP addresses belong
to popular cloud services, e.g., Amazon, DigitalOcean and
etc. Among the 1,072 distinct IP addresses, 370 of them are
identified as Tor gateways [20] (299 of them performed ma-
licious behaviors, e.g., trying to steal the Ether.) All these
IP addresses belong to the second group (Section 4.2.) They
are from 104 different ISPs in 39 countries. Using the Tor
network to hide the real IP addresses make the tracing of
attackers more difficult.

4.2 Grouping Attackers Accounts

After collecting the data, our next step is to group attackers.
However, due to the anonymity property of the Ethereum
network, it is hard to group them based on their identities.
In this paper, we take the following ways to group attackers.

First, we directly retrieve attackers’ Ethereum accounts
through the parameters of RPC requests, and group them
based on these accounts. For instance, the parameter to of
the method eth_sendTransaction denotes the destination
account of a transaction that the Ether will be transferred
into. Attackers use this method to transfer (steal) the
Ether to their controlled accounts. Listing 1 shows the
parameters (in the JSON format) of a captured malicious
transaction launched by an attacker. The value of the to

//The parameters of invoking eth_sendRawTransaction.

{

"jsonrpc": "2.0",
"method": "eth_sendRawTransaction",
"params": ["0xf8a682125f8082ea60941a95b271b0535d15fa49932daba31ba6

12b5294680b844a9059cbb0000000000000000000000000fe07dbd
07ba4c1075c1db97806ba3c5b113cee00000000000000000000000
00000000000000000000000000000000000bebc2001ca095e64177
86£699db2dc195£47662c412bb125b8419b9af030ac237d64c5a92
50a0357a79a314eecd583f9be2235fd627d85c9af8fe292f9e47d4
fa261efc0487bc"],

"id": 2

//The decoded params field of the invocation.
{

"nonce": 4703,

"gasPrice": 0,

"gasLimit": 60000,

"from":"0x00a329c0648769a73afac7f9381e08fb43dbea72",

//This is a smart contract address.

"to": "0x1a95b271b0535d15fa49932daba31ba612b52946",

"value": 0,

"data": "0xa9059cbb0000000000000000000000000fe07dbd07ba4c1075¢c1db9
7806ba3c5b113cee000
00000000000000000bebc200",

ny:o28,

"r'": "0x95e6417786£699db2dc195f47662c412bb125b8419b9af030ac237d64c

5a9250",

"s": "0x357a79a314eecd583f9be2235fd627d85c9af8fe292f9e47d4fa26l1efc

0487bc"

Listing 2: A captured invocation of the method
eth_sendRawTransaction and the decoded params field of
the parameters.

//Function prototype.

Function: transfer(address _to, uint256 _value)
Method ID: 0xa9059cbb

_to: 0x0fe07dbd07ba4c1075c1db97806ba3c5b113ceel
_value: 200000000 (0xbebc200)

Listing 3: The function to be invoked of the smart contract
and its parameters. The _to field contains the attacker’s ac-
count address that the token will be transferred to.

field is 0x63710c26a9be484581dcaclaacdd95ef628923ab,
which is the attacker-controlled account address.
In our system, we monitor the to field of methods
eth_sendTransaction and eth_signTransaction that
directly transfer the FEther, and other two methods
eth_estimateGas and miner_setEtherBase. Note that,
though the eth_estimateGas is used to estimate the gas
consumption of a transaction and does not actually send
the transaction, executing this method on our honeypot
is still considered as a suspicious action since it usu-
ally follows a real transaction afterwards. The method
miner_setEtherBase is used to change the etherbase (or
coinbase) account of a miner. This is the address that will be
rewarded when a new block is mined by the miner node. By
changing this address, the attacker can obtain the reward
Ether, on behalf of the miner.

Second, we indirectly retrieve attackers’ account addresses,
and use them for grouping. This is the case when attackers
steal ERC20 tokens by calling the standard transfer () [17]
function defined in the ERC20 token standard [1]. These
addresses are not in the parameters of the transaction.
However, we can obtain them by retrieving parameters
of the smart contract method invocation. In the follow-

ing, we will use a real example to illustrate the steps. List-
ing 2 shows a captured attack of the RPC request to in-
voke the method eth_sendRawTransaction. We first de-
code the params field to obtain the to field (its value is
0x1a95b271b0535d15fa49932daba31ba612b52946). It turns
out that this address is not an EOA account, but a smart
contract address of the Minereum token [8], whose peak
market capitalization was more than 7 million US dollars
in August 2017 [9]. We further decode the data field to re-
trieve the invoked function in the smart contract and its
parameters. The result is shown in Listing 3. We can see the
malicious account address that receives the stolen ERC20
token is 0x0fe07dbd07badc1075¢c1db97806ba3c5b113cee0.

Third, we group the addresses from the previous two steps
based on their IP addresses. We recorded the source IP ad-
dress of each request, and if multiple attackers’ Ethereum
account addresses are associated with a same IP address, then
we combine these accounts into one group. However, the use
of the Tor network may make this strategy ineffective, since
their real IP addresses are unknown. In this case, we further
group them based on the parameters used in launching the
attacks, e.g., the id field in Listing 1. For instance, requests
from the Tor network have a same id field. Based on this
observation, we believe those requests were initiated from
attackers in a same group, i.e., the group 2 (Table 1).

Using on previous strategies, we group attackers into 36
groups. The detailed information of each group is shown in
Table 1. Among them, attackers from 34 groups (from the
group 1 to the group 34) were stealing the Ether and other
two groups were targeting ERC20 tokens (the group 35 and
36). In the following, we will present the detailed results of
attackers’ behaviors.

4.3 The Analysis of Ether Stealing

The attackers from the group 1 to the group 34 are stealing
the Ether. They are following a three-steps pattern to perform
the attack.

Step 1 - Probing potential victims The first step to
launch the attack is to locate potential victims that have
insecure HTTP JSON-RPC endpoints. Attackers could ob-
tain potential victims by downloading a list of full Ethereum
nodes, or performing a port scanning process to find the ma-
chines with target port number (8545 in our study) opening.
Then attackers issue RPC requests to determine whether the
found IP address is an Ethereum node or even a miner node
that will be useful to send a zero gas transaction (we will
discuss this type of transaction in Section 4.4).

The mostly used commands for Ethereum node probing
are shown in Table 2. Specifically, net_version is used to
identify the client’s current network id to check whether the
Ethereum node is running on the mainnet or a testnet. As the
name indicates, the usage of the testnet is for testing purpose,
and the Ether on this network has no value. By invoking this

Table 1: The result of grouping attackers.

Addresses # of IP # of RPC calls Max calls per day First capture date Last capture date Days of activity
1 Ox6al4le661le24c5el3fe651da8feIb269fecd3df0 57 72,915,681 1,207,185 Jul. 1, 2018 Feb. 28, 2019 178

0x6e4cc3e76765bdc711cc7b5cbfcbbbfed473b192e

0x6ef57be1168628a2bd6c5788322a41265084408a

0x7097£41f1c1847d52407c629d0e0ae0fdd24£d58

0xe511268ccf5c8104ac8f7d01a6ebeaaa88d84ebb
2 0x581061c855c24cab63c9296791de0c9alabaddfct 309 363,860 167,183 Jul. 2, 2018 Feb. 28, 2019 166

0x5fa38ab891956dd35076e9ad5£9858b2e53b3ebb

0x8cacaf0602b707bd9bb00ceedal0fb34b32£39031

0xab259c71e4£70422516a8f9953aaba2cabab85ae

0xd9ee4d08a86b430544254ff95e32aa6fcc1d3163

0x88b7d5887b5737eb4d9f 15fcd03a2d62335c0670

0xe412f7324492eadbeacf30dcec2240553bf1326a
3 0xd6cf5al17625f92cee9c6caabll7ebdcbfbceaedf 14 13,315,318 365,878 Jul. 16, 2018 Feb. 25, 2019 78

0x21bdc4c2£03e239a59aad7326738d9628378f6af

0x72b90a784e0a13bal12a9870ff67b68673d73e367
4 0x04d6cb3ed03£82c68c5b2bc5b40c3f766a4d1241 1 101,731,595 4,802,304]ul.1,2018 Nov. 5, 2018 63

0x63710c26a9be484581dcaclaacdd95e£628923ab
5 0xb0ecbc6£46124703b92e89b37d650fb9f43b28c2 6 326,154 9,711]ul.2,2018 Dec. 3, 2018 64
6 0x1a086b35a5961a28bead158792a3ed4b072f00fe 3 6,791,438 3,346,904 Nov. 1, 2018 Feb. 28, 2019 21

0x73b4c0725c900£0208bf5febb36856abc520de26

0xaff4778d8d05e9595d540d40607c16£677c73cca

0xec13837d5e4df793e3e33b296bad8c4653a256¢chb
7 0x241946e18b9768cf9c1296119e55461f22b26ada 1 7,750,800 118,127 JuLZ,ZOlS Feb. 28, 2019 151
8 0x8652328b96ff12b20de5fdc67b67812e2b64e2ab6 2 3,569,924 281,975 Jul. 1, 2018 Jul. 30, 2018 28
9 0xff871093e4f1582fb40d7903c722ee422e9026ee 1 3,522 1,128 Jul. 2, 2018 Aug. 31, 2018 27
10 0x6230599f54454c695b5cd882064071fc39e6e562 1 13 13 Jul. 5, 2018 Jul. 5, 2018 1
11 0x2c5129bdfc6£865e17360c551e1c46815fe21ec8 1 618 618 Jul. 5, 2018 Jul. 5, 2018 1
12 0xeb29921d8eb0e32b2e7106afca7£53670e4107e5 1 5 5 Jul. 29, 2018 Jul. 29, 2018 1
13 0xe231c73ab919ec2b9aaeb87bb9f0546aa47581b1 1 10 5 Jul. 4, 2018 Jul. 17, 2018 5
14 0x5c8404b541881b9999ce89c00970e5e8862f8e88 3 80 46 Jul. 10, 2018 Jul. 15, 2018 5
15 0x5e87bab71bbeabf068df9bf531065ce40a86ebed 1 274 274 Jul. 11, 2018 Jul. 11, 2018 1
16 0x97743cc5a168a59a86cf854cf04259abe736006a 3 235,213 71,521 Jul. 10, 2018 Jul. 17, 2018 8

0x9d6d759856bfcabf6£405£308d450b79e16dd4e2
17 0x02a4347035b7ba02d79238855503313ecb817688 3 11,246,017 175,417 Novw. 13, 2018 Feb. 28, 2019 97

0xcb31bea86c3becc1£62652bc8b211felbd7f8aed
18 0xe128bb377£284d2719298b0d652d65455c941b5b 1 277 147 Nov. 12, 2018 Nov. 16, 2018 4
19 0xb744d5£73d27131099efee0b70062de6£770a102 2 237,481 64,462 Dec. 18, 2018 Feb. 14, 2019 17
20 0x0e0a930fb51c499b624d6cab6fdd9c95cE5bf2e06 2 59,842 37,608 Aug.4,2018 Feb. 7, 2019 38

0x2c022e9a0368747692b7bd532c435c7a78dc447d

0x3334£7£8bcf593794b01089b6ff4dc63fe023dfe

0x884aa595c10b3331ceb51c2d9f905e52e21fal0bb

0xef462edb8880c4£d0738e4d3e9393660b9cbac72
21 0x9781d03182264968d430a4f05799725735d9844d 8 38,558 13,559 Aug. 28, 2018 Aug. 31, 2018 4
22 0x98c6428fbcabc0f£97570d822dd607£8a55080e5 6 270 140 Aug. 2, 2018 Aug. 5, 2018 2
23 0xa0b0209a04398cb61d845148623e68b3eff8f8cb 1 135 135 Jul.9,2018 Jul.9,2018 1
24 0x21d8976138a2b280d441fd7b12456a1193cb2baf 1 18,597 2,285 Aug.10,2018 Nov. 9, 2018 14
25 0xfed69981c21b96ff37fc52f9e19849126624ddfd 5 963 825 Aug. 13, 2018 Aug. 19, 2018 3
26 0x31c3ecd12abedf767cb446b7326b90blefc5bbd9 3 440,962 49,995 Nov. 1, 2018 Feb. 14, 2019 41
27 0x5£622d88cd745ebb8f£2d4d6b707204c65243438 1 2,782 113 Novw. 1, 2018 Feb. 28, 2019 116
28 0xf2565682d4ce75fcf3b8e28c002dfc408ab44374 1 9 3 Dec. 22, 2018 Jan. 11, 2019 5
29 0xc97663c1156422e2ad33580adab45cad33cf7698 1 3,298 3,297 Feb. 3, 2019 Feb. 10, 2019 2
30 0xc6c42a825555fbef74d21b3cb6bfd7074325¢348 9 73,302 4,327 Nov. 4, 2018 Jan. 6, 2019 22
31 0x454d7320d5751de29074a55ac95bbde312dd7615 1 11 11 Feb. 5, 2019 Feb. 5, 2019 1
32 0x4e25e7e76dbd309alab2a663e36ac09615fc8leb 1 24 23 Jan. 15, 2019 Jan. 16, 2019 2
33 0xaba21375ca42dcc26237f3e861d58f88fe72eab2 1 256 256 Nov. 27, 2018 Nov. 27, 2018 1
34 0xb7032e04fd78ab3b271177143a6db9e00bdf8d49 1 1,345 72 Dec. 30, 2018 Feb. 21, 2019 32
35 0x0fe07dbd07ba4c1075c1db97806ba3c5b113cee0 11 536,612 27,062]ul.1,2018 Feb. 28, 2019 144
36 Oxaa75fb2dcac2e3061a44c831baf0d4c2d4£92£d7 5 26,991 9,510 Jul. 16, 2018 Nov. 9, 2018 11

Oxffecffe94c3e87987454£2392676ccdb98b926£8

Table 2: Most used commands for probing.

Command # of IP addresses # of RPC requests
net_version 122 4,822,620
rpc_modules 81 3,815
web3_clientVersion 103 4,495,312
eth_getBlockByNumber 325 1,190,445
eth_blockNumber 225 27,019,686
eth_getBlockByHash 214 1,633

Table 3: Commands used to prepare attacking parameters.

Command # of IP addresses # of RPC requests
eth_accounts 615 27,040,164
eth_coinbase 64 87,442
personal_listAccounts 11 95
personal_listWallets 5 173,243
eth_gasPrice 21 63,133
eth_getBalance 493 93,585,372
eth_getTransactionCount 63 2,411,504

method, the attacker could find the right targets running the
Ethereum mainnet. The rpc_modules command returns all
enabled modules. By probing this information, attackers can
get the information of enabled modules and then invoke the
APIs inside each module accordingly. Besides the previously
discussed two methods, other ones shown in Table 2 are also
serving the purpose of collecting client information.

Step 2 - Preparing attacking parameters Afterlocating
potential victims, attackers need to prepare the necessary
data to launch further attacks. In order to steal the Ether, the
attacker needs to send an Ethereum transaction with valid
parameters. Specifically, each transaction needs from_address
and to_address as the source and destination of a transaction,
and other optional ones including gas, gasPrice, value and
nonce. In order to make the attack succeed, valid parameters
should be prepared to steal the Ether.

« from_address: The from_address in the transaction is the
victim’s Ethereum account address. The attacker can ob-
tain this value through invoking the following methods,
including eth_accounts, eth_coinbase, personal_listAccounts,
personal_listWallets.

« to_address: The to_address in the transaction specifies the
destination of the transaction. Attackers will set this field
to the account under their control.

« wvalue: This is the value of Ether that will be transferred
into the to_address. In order to maximize their income,
the attacker tends to transfer all the Ether in the victim’s
account, leaving a small amount to pay the transaction

5] 89001
10 --- Normal
Attacker
B 11987 12968
104 §
%‘
5 2792 3295
_g 10 4 1053
o
“ 417
8 252
102 4
20
1 2 3 4 5 6 7 8

Group Number

Figure 3: The comparison of the gas price in the transactions
of attackers and normal users. The typical gas price is 21
Gwei, while the gas price of attackers’ transactions is much
higher.

fee. In order to get the balance of the victim’s account, the
method eth_getBalance is used.

« gasPrice: The attacker could set a high gasPrice to in-
crease the chance of the transaction being executed (or
packed into a block by miners.) For instance, the at-
tacker (0x21bdc4c2f03e239a592ad7326738d9628378f6af)
tends to use a much higher gasPrice in the transaction to
steal Ether. Figure 3 shows the gas price of transactions
from attackers and normal users. We will illustrate it later
in this section.

Step 3 - Stealing Ether In order to successfully send a
transaction, it needs to be signed using the victim’s private
key. However, the private key is locked by default, and a
password is needed to unlock it. We observed two differ-
ent behaviors that are leveraged by attackers to solve this
problem.

« Continuously polling: Attackers continuously invoke the
methods, i.e., eth_sendTransaction or eth_signTransaction
in the background. If a legitimate user wants to send a
transaction at the same time, then he or she will unlock
the account by providing the password. This leaves a small
time window that the attacker’s attempt to send a transac-
tion will succeed.

However, in order to successfully launch the attack, there
are still two challenges. First, the time window is really
small. Attackers should happen to invoke the method to
send a transaction at the same time when the user is un-
locking the account. To increase the chance of a success-
ful attack, the operation to send the transaction should
be very frequent. That’s the reason of our observation
that some attackers are repeatedly invoking the previously
mentioned methods at a very high frequency, nearly 50

requests per-second. Second, since the attacker is sending
the transaction at the same time with the user (i.e., when
the user is unlocking his account), his transaction may
fail if the user’s transaction is accepted by the miner at
first and the remaining balance of the account will not be
sufficient for the attacker’s transaction. In order to ensure
that his transaction will be accepted by miner in a timely
fashion, the attacker will use a much higher value of the
gasPrice than normal transactions to bribe miners.

Figure 3 shows the gas price of transactions from attack-
ers and normal users. Specifically, we first calculate the
average gas price of captured transactions from the group
1 to 8 (the solid line in the Figure). Then we calculate
the average gas price of transactions of normal users in
six months (the dash line in the Figure). It turns out that
the gas price from attacker’s transactions is much higher
(from 15 times to 4,500 times) than the value of a normal
transaction. Setting a higher gas price can increase the
speed that their transactions are packed into a block. This
strategy is very effective, and we have observed several
cases that the transaction with a higher gasPrice succeed,
while the ones with lower gasPrice failed [18,19].

« Brute force cracking: Besides the polling strategy, some
attackers are leveraging the brute force attack to guess
the password. Specifically, they try to unlock the account
using the password in a predefined dictionary. Since the
Ethereum client does not limit the number of wrong pass-
word attempts during a certain time period, this attack is
effective if the victim uses a weak password. For instance,
attackers from the group 11 leveraged this strategy and
tried a dictionary with more than 600 weak passwords,
e.g., qwerty123456, margarita and 192837465. Another at-
tacker from the group 1 took the same way, but only tried
one password (ppppGoogle). The reason why this specific
password was used is unknown. However, we think it may
be the default password for some customized Ethereum
clients.

Interestingly, after a successful try to unlock the account,
the attacker will set a relatively long timeout value by
invoking the personal_unlockAccount. By doing so, the
account will not be locked again in a long time period so
that the attacker can perform further attacks much easier.

4.4 The Analysis of ERC20 Token Stealing

Attackers from two groups (group 35 and 36) are targeting
ERC20 tokens. ERC20 is a technical standard used by smart
contracts on the Ethereum network to implement exchange-
able tokens [1]. The ERC20 token can be viewed as a kind
of cryptocurrency that could be sold on some markets, thus
becoming valuable targets.

Before illustrating the detailed attacking behaviors, we
will first discuss an interesting type of transaction called

zero gas transaction, which we observed in our dataset.
It exploits the packing strategy of some miners to send trans-
actions without paying any transaction fee. By using this
type of transaction, attackers could perform malicious ac-
tivities to steal ERC20 tokens from addresses with leaked
private key, or exploit the AirDrop mechanism of ERC20
smart contracts to gain extra bonus tokens with nearly zero
cost.

Zero gas transaction Sending a transaction usually con-
sumes gas (Section 2.3). The actual cost is calculated as the
product of the amount of gas consumed and the current gas
price. The amount of gas consumed during a transaction de-
pends on the instructions executed in the Ethereum virtual
machine, while the gas price is specified by the user who
sends the transaction. If it is not specified, a default gas price
will be used.

Interestingly, our honeypot captured many attempts of
sending transactions with a zero value in the gasPrice field.
This brings our attention for a further investigation. We want
to understand whether such transactions could be success-
ful, and the intentions for sending such transactions. After
performing multiple experiments, transactions with a zero
gas price received through the p2p network are not accepted
by the miner, and will be discarded as invalid ones. However,
if such a transaction is created and launched on the miner
node itself (i.e., the node that successfully mines a new block
is sending a zero gas transaction), then the transaction will
be packed into the block by the miner and accepted by the
network.

This explains the existences of such transactions captured
by our honeypot. In particular, attackers were launching
zero gas transactions on every vulnerable Ethereum node,
in hope that the node is a miner node that is successfully
mining a new block. Though the chance looks really slim,
we found several successful cases in reality, e.g., the first
several transactions in the block 5899499 [3]. Most of the
transactions are transferring ERC20 tokens to the address
0x0£e07dbd07ba4c1075c1db97806ba3c5bl13cee0, whichis a
malicious account owned by the attacker in group 20.

Attack I: stealing tokens from fisher accounts The
first type of attack is leveraging the zero gas transactions
to steal tokens from fisher accounts. In order to understand
this attack, we first explain what the fisher account is in the
following.

The fisher account means that some attackers intentionally
leak the private key of their Ethereum accounts on Internet.
They also transfer some ERC20 tokens to the accounts as the
bait. Since the private key of the account is leaked, other users
could use the private key to transfer out the ERC20 tokens.
However, there is one problem in this process. In order to
transfer the ERC20 tokens, the account should have some
Ethers to pay the transaction fee. As a result, one may transfer
some Ethers into this account, in hope to get the ERC20
tokens. Unfortunately, after transferring the Ether into this

Table 4: The top ten ERC20 tokens that attackers are target-
ing.

of RPC Token

ERC20 token addresses
requests name

0x1a95b271b0535d15fa49932daba31ba612b52946 11,788 MNE
0xee2131b349738090e92991d55£6d409ce17930b92 8,998 DYLC
0x0775c81a273b355e6a5b76e240b£708701£00279 8,099 BUL
0xbdeb4b83251fb146687fa19d1c660f99411eefe3 7,735 SVD
0x0675daa94725a528b05a3a88635c03ea964bfa7e 7,359 TKLN
0x87c9ea70f72ad55a12bc6155a30e047cf2acd798 7,058 LEN
0x4c9d5672ae33522240532206ab45508116daf263 5,510 VGS
0x23352036e911a22cfc692b5e2e196692658aded9 4,011 FDZ
0xcb56b13ebbcffab7cfb7979b900b736b3£b480478 2,219 SAT
0x89700d6cd7b77d1£52c29ca776aleae313320fc5 1,708 PMD

account, the Ether will be transferred out to some accounts
immediately by attackers. That’s the reason why such an
account is called the fisher account. The main purpose of
leaking the private key is to seduce others transferring Ether
into the fisher account.

For instance, there is a fisher account whose address
is 0xa8015df1f65e1£53d491dc1ed35013031ad25034 [2]. The
attacker bought 75,000 ICX (a ERC20 token) as the fishing
bait that values around 66,000 US dollars. Occasionally, the
fisher released the private key of that account on the Inter-
net. Anyone who transfers the Ether into this account and
hopes to obtain the ICX token will be trapped to lose the
transferred Ether.

Interestingly, by leveraging the zero gas transaction pre-
viously discussed, attackers could steal the ERC20 tokens
in the fisher account. Specifically, attackers could send the
transactions to transfer the ERC20 tokens in the fisher ac-
count with zero gas price. If the transaction is successful,
then the attackers will obtain the ERC20 tokens without any
cost.

In our dataset, the user in group 35 (the address is
0x0£e07dbd07badc1075c1db97806ba3c5b113ceel) was per-
forming this type of attack. In total, the attacker sent 61,158
RPC requests, stealing 161 different types of ERC20 tokens.
We show the detailed information of the top ten ERC20 to-
kens that this attacker is targeting in Table 4. We observed
several different IP addresses (62.75.138.194, 77.180.167.78,
77.180.200.1, 92.231.160.88, 92.231.169.137, 95.216.158.152 and
etc.) from this attacker.

Attack Il: Exploiting the airdrop mechanism Airdrop
is a marketing strategy that the token holders would receive
bonus tokens based on some criteria, e.g., the amount of total
tokens they hold. The conditions to send out bonus tokens
depend on the individual token maintainer.

Some attackers are leveraging the zero gas transaction
to obtain the free LEN tokens. Specifically, the LEN token
has an airdrop strategy that if a new user A sends any
amount of LEN token to the user B, then both A and B

10

will be rewarded with 18,895 LEN tokens. Hence, the at-
tacker could create a large number of new accounts, and
then transfer LEN tokens to the attacker’s address (address
Oxffecffe94c3e87987454£2392676ccdb98b926£8 in group
36). By doing so, the new account will receive a bonus token,
which will be transferred to the attacker’s account, while at
the same time the attacker’s account will also receive the
bonus. We observed many attempts of such transactions
using zero gas price, with 7,058 different source account
addresses and one destination address (the attacker’s ad-
dress). This transaction does not consume any gas, and the
attacker could be rewarded with ERC20 tokens. By using
this method, the attacker even becomes a large holder of this
token (2.4%) [16].

5 Transaction Analysis

After capturing malicious accounts and analyzing the de-
tailed attackers’ behaviors, we further estimate profits of
attackers. Though we can directly get the estimation by cal-
culating the income of malicious accounts, attackers may
use other account addresses that have not been captured by
our honeypot. We call these addresses that are potentially
controlled by attackers as suspicious accounts.

In our system, we take the following steps to detect sus-
picious accounts. The basic idea is if the attacker transfers
the Ether from a malicious account to any other account, it
is highly possible that the destination account is connected
with the attacker. The attacker has no reason to transfer
the Ether to an account that has no relationship with. Note
that, the attacker could transfer the Ether to a cryptocur-
rency market, where he can exchange it with other types of
cryptocurrencies or real currency. These markets should be
removed from suspicious accounts in our study *.

To this end, we used a similar idea of the taint analysis [35]
to find suspicious accounts. Specifically, we treat malicious
accounts captured by our system as the taint sources, and
propagate the taint tags through the transaction flows until
reaching the taint sinks, i.e., the cryptocurrency markets.
We also stop this process if the number of accounts tra-
versed reaches a certain threshold. In our study, we use
3 as the threshold. All the accounts in the path from the
taint source to the taint sink are considered tainted and sus-
picious, as long as the endpoint is a cryptocurrency mar-
ket. Other nodes are marked as unknown ones, since we
do not have further knowledge about whether the nodes
are suspicious or not. Figure 4 shows an example of this
process to detect the suspicious accounts from the mali-
cious one 0xe511268ccf5c8104ac8f7d01abebeaaad8d84ebb.
In this figure, the cryptocurrency market nodes are marked
in the house symbol, and the original attacker we captured is

4We obtained the addresses of cryptocurrency markets from the Ether-
scan website [6].

Table 5: Our estimation of attackers’ profits in Ether and US dollars. The price of one Ether is around 139 US dollars (March,
2019). We remove the addresses with zero profit from the table.

Malicious Plus Suspicious
Al
ddresses Ether | USD Ether | USD
1 Ox6aldle661e24c5e13fe651da8fedb269fecd3df0 116.91 $16,280.23 814.45 $113,412.00
0x6e4cc3e76765bdc711cc7b5cbf c5bbfed73b192e 56.16 $7,820.34 794.67 $110,657.59
0x6ef57be1168628a2bd6c5788322a41265084408a 37.79 $5,261.74 1,420.06 $197,743.19
0x7097f41f1c1847d52407c629d0e0ae0fdd24£d58 | 281.44 $39,191.07 1,331.74 $185,444.98

0xe511268ccf5c8104ac8f7d01a6ebeaaa88d84ebb 152.26 $21,201.86 1,332.53 $185,554.52
0x8652328b96ff12b20debfdc67b67812e2b64e2a6 37.75 $5,256.18 1,066.31 $148,483.43

0xf£871093e4f1582fb40d7903c722ee422e9026ee 0.00 $0.69 9.34 $1,300.01
2 0x5fa38ab891956dd35076e9ad5f9858b2e53b3eb5 48.24 $6,716.88 94.28 $13,129.14
0x8cacaf0602b707bd9bb00ceeda0fb34b32£39031 0.00 $0.14 10.66 $1,483.80
0xab259c71e4£70422516a8f9953aaba2caba585ae 2.53 $351.64 4.18 $581.92
0xd9ee4d08a86b430544254ff95e32aa6fcc1d3163 54.12 $7,535.80 55.72 $7,759.26
0x88b7d5887b5737eb4d9f 15f cd03a2d62335c0670 0.24 $33.41 0.24 $33.41
0xe412f7324492ead5eacf30dcec2240553bf1326a 0.24 $33.96 0.24 $33.96
0x241946e18b9768cf9c1296119e55461f22b26ada 1.53 $213.74 1.53 $213.74
0x9781d03182264968d430a4f05799725735d9844d 50.32 $7,006.89 61.47 $8,560.18
4 0x04d6cb3ed03f82c68c5b2bc5b40c3f766a4d1241 2.38 $331.13 2.38 $331.13
0x63710c26a9be484581dcaclaacdd95ef628923ab 19.44 $2,706.79 38.88 $5,413.47
0xb0Oec5c6£46124703b92e89b37d650fb9f43b28c2 0.87 $120.84 1.64 $227.89
6 0x1a086b35a5961a28bead158792a3ed4b072f00fe 80.22 $11,170.51 4,821.68 $671,419.10
0x73b4c0725c900£0208bf5febb36856abc520de26 1.10 $153.12 1.10 $153.12
0xec13837d5e4df793e3e33b296bad8c4653a256¢ch 1.62 $226.21 1.62 $226.21
11 0x2c5129bdfc6£865e17360c551e1c46815fe21ec8 113.93 $15,864.25 506.86 $70,580.16
15 0x5e87bab71bbea5f068df9bf531065ce40a86ebed 0.05 $6.42 0.05 $6.42
17 0x02a4347035b7ba02d79238855503313ecb817688 4.30 $598.46 4.30 $598.46
0xcb31bea86c3becc1f62652bc8b211felbd7f8aed 0.21 $29.19 0.21 $29.19

0xd6¢cf5a17625f92cee9cBcaabli7eb4cbfbeceaedf | 2,030.19 | $282,704.44 2,030.19 $282,704.44
0x21bdc4c2f03e239a59aad7326738d9628378f6af 357.78 $49,820.26 58,692.91 $8,172,988.20
0x72b90a784e0a13bal12a9870f£f67b68673d73e367 558.32 $77,746.63 59,298.45 $8,257,309.40

26 | 0x31c3ecd12abe4f767cb446b7326b90blefc5bbdd | 0.10 $13.23 0.10 $13.23

28 | 0xf2565682d4ce75fcf3b8e28c002dfc408abad374 | 173.99 | $24,228.78 | 866.10 $120,604.60
0xb7032e04£d78ab3b27117714326db9e00bd£8d49 | 8.02 $1,116.77 8.02 $1,116.77

30 | 0xc6c42a825555fbef74d21b3cb6bfd7074325¢348 1.50 $208.36 1.50 $208.36

32 0x4e25e7e76dbd309alab2a663e36ac09615fc81eb 0.04 $6.27 0.05 $7.34

Total | 4,193.58 | $583,956.23 | 133,273.46 | $18,558,328.61

11

O0x2ff5

62.7659

CryptoMarket

AttackAccount

SuspiciousAccount

‘Unknown

Oxa23d —389038500 o 550p,

Figure 4: One example of detecting suspicious accounts
through the transaction analysis. The house ones are the
cryptocurrency markets, the circle one is the malicious ac-
count. The box ones without background color are suspicious
accounts, while the ones with gray background are unknown
accounts.

marked as a circle. Box nodes without background color are
the suspicious accounts we identified, and others with gray
background color are unknown addresses. The line between
two nodes denotes transactions between them. We also put
the number of Ether transferred above the line. In total, we
identified 113 suspicious addresses, and 936 unknown ones,
respectively.

After that, we estimate attackers’ profits. We first calculate
the lower bound of profits by only considering the income of
the malicious accounts. Since our honeypot observed their
behaviors of stealing the Ether, we have a high confidence
that these malicious accounts belong to attackers. Then we
add the income of suspicious addresses into consideration.
Since these addresses are not directly captured by our hon-
eypot, we do not have a hard evidence that they belong to
attackers. However, they may be connected with or con-
trolled by attackers. Table 5 shows the estimated profits. We
remove the addresses with zero profit from the table (e.g.,
addresses in the group 10), and we do not count the attackers
from the group 35 and 36 since they are targeting ERC20
tokens, whose value are hard to estimate due to the dramatic
change of the token price. It’s worth noting that, the actual
income of attackers are far more than the value shown in
the table since there are many attacks in the wild that were
not captured by our system.

6 Discussion

Though we have adopted several ways to make our hon-
eypot an interactive one, cautious attackers can still detect
the existence of our honeypot and do not perform malicious
activities thereafter. For instance, the attacker can first send
a small amount of Ether to a newly generated address and
then observe the return value (the transaction hash) of this

12

transaction. Since the transaction to send the Ether in our
honeypot does not actually happen, the return value is an
invalid one (a randomly generated value). The attackers can
also simply send some uncommon commands and observe
the return value to detect the honeypot. Nevertheless, it is
an open research question to propose more effective coun-
termeasures to improve the honeypot.

In this paper, we take a conservative way to detect suspi-
cious accounts and estimate profits of attackers. Specifically,
we leverage the knowledge of whether an address belongs
to a cryptocurrency market and mark the tainted accounts
whose Ether eventually flows into cryptocurrency markets
as suspicious. However, the knowledge of the mapping be-
tween addresses and cryptocurrency markets is incomplete,
since these addresses are manually labelled. Some suspicious
accounts