
Seeds of SEED: H2Cache: Building a Hybrid Randomized
Cache Hierarchy for Mitigating Cache Side-Channel Attacks

Xingjian Zhang
Zhejiang University, China

zhxj9823@gmail.com

Ziqi Yuan
Zhejiang University, China

ziqiyuanss@gmail.com

Rui Chang
Zhejiang University, China

crix1021@zju.edu.cn

Yajin Zhou
Zhejiang University, China

yajin zhou@zju.edu.cn

Abstract—Cache side-channel attacks can leak critical information
from the target programs. The cache randomization methodology has
proven to be an efficient way to mitigate such attacks. However, existing
works do not take the cache hierarchy into consideration, failing to
address the issue that different levels of caches have different performance
and security requirements. In this work, we propose and implement a
hybrid randomization scheme, named H2Cache, to mitigate cache side-
channel attacks. H2Cache leverages two randomization approaches and
applies them to different levels of caches. It strengthens the security of
cache modules, while satisfying the performance and resource utilization
requirements. Specifically, we design a table-based randomization method
for the L1 cache, which uses a hashed virtual index to look up the
actual cache set index. The L2 cache in H2Cache takes a computation-
based randomization function to calculate the cache set index. We
have implemented a prototype of H2Cache and extensively evaluated
it using a self-designed RISC-V processor on the FPGA platform.
We demonstrate the security of H2Cache through simulated attack
programs and quantitative analysis. Meanwhile, the evaluation results
of performance and resource utilization have shown its efficacy.

Index Terms—Cache hierarchy, Cache side-channel attacks, Random-
ization, RISC-V

I. INTRODUCTION

Modern computer systems use cache as an efficient method to
bridge the speed gap between CPU and external memory. This has
been proven to be an essential module to speed up program execution
after decades of evolution. However, most cache designs primarily
focus on enhancing their efficiency, but lack concerns about potential
cache side-channel attacks. Cache-based side-channel attacks have
drawn much attention since their emergence, especially after the
disclosure of Meltdown [1] and Spectre [2] vulnerabilities. They
utilize micro-architectural features instead of software vulnerabilities
to extract critical information. The vulnerabilities affect a wide range
of devices, from cloud servers [3], [4] to mobile devices [5], [6].
Besides, cache-based side-channel attacks have the capability to
launch powerful attacks such as extracting cryptographic keys [7]–
[10], and bypassing ASLR [11]. Therefore, how to mitigate such
widespread and influential attacks needs to be a key consideration in
contemporary cache designs.

To defeat cache side-channel attacks, researchers have proposed
various mechanisms. Some systems [12]–[14] solve the problem from
the software’s perspective. They are easy to be deployed in existing
hardware. But their efficacy still relies on the underlying hardware
micro-architecture. In contrast, hardware-based defense mechanisms
change the micro-architecture implementation, and thus solve the
problem from the basis. In particular, the cache randomization scheme
has emerged as a promising approach. It uses a randomization
mapping to break the fixed mapping from the request address to
the cache set index. Different randomization schemes include table-
based randomization and computation-based randomization. The
table-based randomization scheme [15]–[17] uses a table to store the
mapping from the address to the cache set index, which introduces

low performance overhead but suffers from scalability problems
due to the storage requirement of the table. The computation-based
approach [18]–[20], on the other hand, does not have the burden
of the table storage. Using cryptographic algorithms, it generates
the cache set index from the address, so it does not suffer from
the scalability issue but introduces a higher performance overhead.
Therefore, the two schemes bear different merits and can be used in
different scenarios. For example, the L1 cache needs to provide low
latency with a small size, so it may be better suited for the table-
based approach. The L2 cache has a larger size and latency and may
match the features of the computation-based approach.

One issue that requires consideration in the current secure cache
design is cache hierarchy, as modern processors have widely adopted
this structure. Existing works often target a specific level of the cache
hierarchy and bring out a proposal that suits for a cache module.
However, they leave the interactions between different levels of cache
modules out of consideration. The interactions may impact the access
behavior of the cache modules and the security attributes of the
cache module. Therefore, new defense mechanisms should consider
the cache system as a whole, rather than separate modules.

Another thing to be noted is that current works are mainly designed
for a generic architecture or specific ISAs like x86 and ARM, leaving
RISC-V out of the spotlight. The RISC-V architecture is an emerging
open-source ISA [21], [22], which boosts the development of open-
source processors and research prototypes. However, recent stud-
ies [23]–[25] have shown that the RISC-V architecture is not immune
to cache side-channel attacks, as its current design does not consider
those issues. Besides, current works mainly use a simulation-based
implementation and evaluation environment without fully considering
hardware features, especially for the RISC-V architecture. Therefore,
how to design an efficient and yet secure cache system for the RISC-
V system is still an open question.

In this paper, we propose H2Cache, which leverages both
randomization-based mechanisms based on different demands across
the cache hierarchy to mitigate cache side-channel attacks. Specif-
ically, H2Cache uses a table-based randomization design in the
L1 cache that incurs the lowest latency, and a computation-based
randomization scheme in the L2 cache to achieve better scalabil-
ity. We have implemented H2Cache on a self-designed RISC-V
processor, called ZJV, and performed the extensive evaluation. We
demonstrated the security of H2Cache through attack testing and
security analysis. Meanwhile, the results of performance and resource
utilization evaluation have shown its efficacy.

In summary, our work makes the following main contributions.
• We propose a defense scheme against cache side-channel attacks

from the perspective of the whole cache hierarchy, including
both L1 and L2 caches.

• We present a hybrid randomized cache hierarchy, which lever-
ages the benefits of both table-based and computation-based

1



randomization schemes to meet security and performance needs.
• We design and implement a cache system, H2Cache, on a self-

designed RISC-V processor, and perform extensive evaluation
including security, performance, and resource utilization on the
FPGA platform.

The rest of the paper is structured as follows. Section II introduces
cache side-channel attacks and defines our threat model. Section III
introduces our design and implementation of H2Cache. Section IV
shows the evaluation results in terms of security, performance, and
resource utilization. Section V discusses the limitations and future
works of H2Cache, and section VI talks about our related work.
Section VII concludes the paper.

II. THREAT MODEL

A. Cache Side-channel Attacks

Cache side-channel attacks utilize micro-architectural features of
the cache to infer the access pattern of the target program, which
would leak critical information of the program. Prime+Probe attack
[4], [8] is a variant of cache side-channel attacks. To successfully
launch such an attack, the attacker needs to prepare the cache to
a definite state by priming the cache with one’s own data. Then the
attacker would let the target program execute critical functions which
may access the critical data. After that, the attacker measures the
access time of different blocks to check if there is a time difference
with previous accesses, and misses could be viewed as access to the
critical data by the victim. Repeating this process enables the attacker
to gain sufficient information about the critical data, which breaks the
security boundaries between different entities.

To launch the attack, one key step is to find addresses that fall in
the same cache set as the target address. The set of those addresses
is called the eviction set. For traditional cache structures, this process
would be trivial, as the cache modules directly use part of the address
as the cache set index. For a secure cache scheme, the amount of
effort to find an eviction set indicates its security.

B. Assumption

This paper targets cache side-channel attacks based on cache set
conflicts as illustrated in Section II-A, while other attacks, including
transient execution attacks and other micro-architectural attacks, are
out of our scope. We make the following assumption about the
attacker and the environment.

• The attacker could know the address of the critical information,
but cannot access it directly.

• The attacker could access a sufficient range of address space.
• The attacker could measure the latency of cache access precisely

without noise interference.
• The attacker could have the awareness of the targeted cache

micro-architecture as well as its security mechanism against the
attacks, but cannot modify them.

C. Requirement

Besides the assumptions from the attack side, there are also some
requirements for the secure cache proposal as the cache modules
need to improve the performance of the system and interact with
other modules. We list the following requirements for the defense
mechanisms.

• Efficiency: The introduced cache security mechanism should
have minimal impact on the performance of the system.

• Compatibility: The security-enhanced cache system should
require minimal modifications of other parts of the system.

• Security: The security mechanism should mitigate or eliminate
potential cache side-channel attacks successfully.

Index
Hit 

Check 
Logic

Tag Index Offset

Address

vIndex0

.
.
.

.
.
.

vIndexj

.
.
.

vIndexi

vIndexm

n+k bits n bits
Hash Function

Meta0

.
..

.
.
.

Metaj

.
.
.

Metai

Metam

MetaArray

Data0

.
.
.

.
.
.

Dataj

.
.
.

Datai

Datam

DataArray

Fig. 1. Table-based randomization design for L1 cache in H2Cache.

III. DESIGN AND IMPLEMENTATION

A. Overview

We consider H2Cache with a two-level cache hierarchy. The L1
cache in H2Cache is separated into an instruction cache and a
data cache, and the L2 cache in H2Cache is a unified structure.
Each cache module is set-associative. This topology is common in
processors, while our proposal is not confined to this arrangement.
For L1 cache modules, they are the smallest and fastest cache
modules in the hierarchy, as the system requires. The L2 cache
module, on the other hand, is relatively large and slow. Therefore,
different responsibilities of cache modules lead to their different
structures.

In general, we use the cache randomization method as an approach
to defending against cache side-channel attacks. It breaks the mapping
from the requested address to the cache set index, which increases the
difficulty of finding the eviction set. To satisfy the requirements listed
in section II-C, we use a table-based randomization approach for the
L1 cache and a computation-based randomization approach for the
L2 cache. This hybrid randomization scheme for the different levels
of cache modules makes a balance between efficiency and security
requirements. Besides, we also adopt a skewed cache [26] design to
further strengthen the security without degrading the performance.
H2Cache is compatible with various architectures and requires no
modification to software or other parts of the system.

B. Table-Based Randomization for L1 Cache in H2Cache

Fig. 1 illustrates our table-based randomization scheme of L1 cache
in H2Cache. Traditional cache modules derive the cache set index
directly from the part of the requested address with the width of n,
which corresponds to 2n cache sets in the cache. In our secure L1
cache design, we use all but the offset bits in the address to calculate
a virtual index with additional k bits using a hash function, which
virtually maps to a cache array with 2n+k entries. The computed
virtual index is then matched against each of the 2n (n+k)-bit entries
in the virtual index table. If there is a match, then the physical index
of the corresponding virtual index entry is the actual index for the
address. After this lookup process, the cache module would continue
the cache access like the traditional cache. Particularly, if there is no
matching virtual index entry in the table, the module would randomly
choose an entry for the virtual index. If a conflict in the physical index
occurs, the cache line is evicted and the corresponding virtual index
entry is updated.

In the implementation, we use an array of registers to store the
virtual index table, which can complete the lookup process and
continue the cache access quickly. The hash function we adopt in
the module is

vIndex = addrupper ⊕ addrlower ⊕ key.

2



Crypto
Engine

Tag Index Offset

Address

n bits

Meta0

.
.
.

.
.
.

Metaj

.
..

Metai

Metam

MetaArray

Data0

.
..

.
..

Dataj

.
.
.

Datai

Datam

DataArray

Key

Fig. 2. Computation-based randomization design for L2 cache in H2Cache.

This function performs the exclusive-or operation with the upper half
and the lower half of the address, and the result would be encrypted
with an exclusive-or operation using a randomly generated key. We
use the configuration of k = 3 to make a balance between the
storage need and security. The complexity of the hash function and
the value of k can be adapted to different performance and security
requirements.

This randomization function deployed in the L1 cache satisfies
the requirements in section II-C. For the security requirement, this
approach clearly breaks the direct mapping from the requested
address to the cache set index, so the attacker cannot directly get
the index of the target address. Furthermore, this approach would
also change the physical index after eviction, which would make
eviction set construction even harder. For the efficiency requirement,
this scheme would not induce extra latency as the lookup process can
finish quickly. Besides, this approach could, in theory, increase the
utilization rate of the cache as it can reduce the possibility of cache
conflicts.

C. Computation-Based Randomization for L2 Cache in H2Cache

Fig. 2 shows our computation-based randomization mechanism of
L2 cache in H2Cache. As the table-based design shown in section
III-B may not be suitable for larger caches like the L2 cache, we
use the computation-based approach to offer the security guarantee
and satisfy the resource and latency requirements. In our design,
we compute the actual index for a requested address using a keyed
cryptographic function. This function takes the key and the truncated
address (only tag and index) as the input, and the result would be
truncated to serve as the access index. Cache metadata and data would
be fetched according to the produced index. All other components
within and outside the cache module can be left unmodified.

In our implementation, we use QARMA7-64-σ2 as the crypto-
graphic function to determine the cache set index. QARMA [27] is
a family of tweakable block ciphers dedicated to high-performance
hardware design. Compared to traditional block ciphers like AES,
QARMA features its acceptable hardware and performance over-
head and yet strong security guarantee. We take the truncated address
as its input plaintext with a randomly generated 128-bit key and the
zero tweak. The lower bits from the ciphertext are used as the cache
set index.

This approach clearly strengthens the security of the cache module
as it uses a cryptographic result instead of a plaintext as the cache
set index. From the performance perspective, the process would
not complex the key management for the OS, but may cause the
degradation of the performance since completing the cryptographic
calculation requires some cycles, which is four cycles as to our
implementation. However, additional latency can be partially hidden
by other operations within the cache module, as previous work [20]
has stated. For example, both QARMA cryptographic function and
cache operations can be implemented in a pipelined style, which can

Randomization
Function

Array0

Line0

Line1

Line3

Line2

Array1

Line0

Line1

Line3

Line2

Array2

Line0

Line1

Line3

Line2

Array3

Line0

Line1

Line3

Line2

Tag Index Offset

Address

Fig. 3. Skewed cache design in H2Cache.

overlay several inflight cache requests, and thus lower the overall
latency.

D. Skewed Cache in H2Cache

To further enhance the security of the cache system and make
use of cache set associativity, we use the design of skewed cache
to strengthen the randomization functions, as Fig. 3 shows. The
skewed cache approach would complicate the cache set mapping as
the number of possible mappings is increased multiple times, and
it would not cause performance degradation. This design can thus
further avoid index conflicts and reduce the chance of linking cache
set index to the original index. Built upon the randomization functions
introduced in section III-B and III-C, each way in the cache module
can produce different indices even for the same address. For the table-
based approach in section III-B, each way manages a distinct virtual
index array and applies a different key to the hash function. For
the computation-based approach in section III-C, each way uses a
different key for the cryptographic function. When there is a need
for cache line replacement, we use the random replacement policy
for simplicity and applicability.

Using the skewed cache can offer comparable or even better
efficiency while hardening its security. With this approach, the rate
of conflict misses in the cache might be lower, which boosts the
performance of the cache.

IV. EVALUATION

In this section, we first set up the experimental environment in
section IV-A including our RV64 processor with other hardware and
software tools. Then we present the evaluation of H2Cache from
section IV-B to IV-E in the following aspects:

• Security analysis through the quantitative approach.
• Security testing using a Prime+Probe-like attack.
• Performance test on the FPGA platform.
• Resource utilization evaluation by Vivado.

A. Environment Setup

We evaluate the performance and resource utilization of our imple-
mentation in an FPGA environment. We integrate our cache design
within ZJV, our self-designed 64-bit RISC-V processor capable of
booting Linux distributions. The processor and peripherals, including
DDR, UART, boot ROM, and SD card, form an SOC system, which
is synthesized and implemented by Vivado on Digilent Nexys A7
evaluation board with Xilinx Artix-7 Series FPGA. Fig. 4 is the
illustration of the greeting logo of ZJV and the initial booting process
of RISC-V Linux. The detailed configurations for our experiment are
shown in Table I.

We use UnixBench [28] as our benchmark for performance pro-
filing. We run it with the default configuration atop the Debian OS

3



Fig. 4. ZJV boots Linux 5.8.18.

[29]. The UnixBench test suite consists of 12 test programs, which
cover 2 computational tests and 10 operating system tests. As for
resource utilization analysis, we use the utilization and power reports
generated from Vivado 2019.2.

TABLE I
CONFIGURATIONS FOR THE EXPERIMENT

Component Configuration

OS Linux 5.8.18, compiled by clang with RV64IMAC and LP64
UnixBench version 5.1.3, compiled by gcc with RV64GC
FPGA Nexys-A7 board, xc7a100tcsg324-1, 60 MHz, Vivado 2019.2
Processor ZJV, RV64 IMAC support, 10-stage pipeline
L1 cache 4/8/16 KB, 2/4 ways, 32B line size
L2 cache 32KB, 2 ways, 64B line size

B. Security Analysis

For the L1 cache module, we assume that its index length is n
bits, with additional k bits to form the virtual index, and the cache
module has nway ways of associativity. In our secure cache design,
there are 2n+k possible virtual index numbers, and each way may
have a different virtual index for each address, so there would be
2(n+k)·nway different combinations of virtual indices, which may be
larger than the address space. Therefore, finding two addresses with
the same index mapping would not be possible. Even if the attack
does not need to find such an address that is fully congruent with
the target address, it would still be hard enough to find addresses
that could form an eviction set. For each way in the cache, the
possibility of conflicts between two addresses would be 2−n, so there
is a possibility of

p = 1− (1− 2−n)naccess

to evict the target address after naccess accesses. Therefore, there
needs

naccess =
log (1− p)

log (1− 2−n)

accesses to evict an address from one way with the confidence of p,
and naccess ·nway accesses to evict the target address from the cache.
Still, the attacker may not be able to infer the access pattern of the
target program as the target address may lie in a different cache set
after refilling.

For the L2 cache module, we use n
′

to denote its index length,
and n

′
way for its set associativity. Following a similar process, it can

be deduced that the number of accesses to the L2 cache required to
evict an address from one set with the confidence of p

′
would be

n
′
access =

log (1− p
′
)

log (1− 2−n
′
)
,

so there would be n
′
access ·n

′
way in total to evict an address from the

L2 cache. Combining with the result for the L1 cache, there would
be naccess · nway · n

′
access · n

′
way data accesses to evict the target

address from the cache system. Even if the target address would be
refilled to the same cache set, the cost to detect it would be excessive.

C. Security Testing

We can also demonstrate the security of our hybrid randomized
cache system through a security test. Our test program consists of a
spy thread and a victim thread. The spy thread launches a simplified
Prime+Probe attack to monitor the cache access pattern of the victim
thread with the following steps. In the Prime step, the spy fills all sets
in the data cache with its own array of data. In the Access step, the spy
sleeps and the victim runs and accesses the critical data, which evicts
the corresponding data from the spy in the data cache. In the Probe
step, the spy wakes up to access the primed data and measure the data
read latency for each set. We set a threshold for the access time of
each cache set, and one access with the above-the-threshold latency
would be counted as a cache miss, which may be a result of victim
accessing. We also add some random data access in the victim thread
to emulate a real-world scenario more approximately. To measure the
result more precisely and test our design more concretely, we repeat
the process for a number of iterations and put the critical data in
different locations.

We run our testing program on both traditional design and our
secure cache design. Fig. 5 shows the resulting accessing heat map
for two designs. The horizontal axis represents the cache set index
corresponding to the target address, and the vertical axis represents
the number of misses during the probing process for each cache set.
Lighter colors stand for more cache misses in the corresponding cache
set, which may indicate a higher chance of cache eviction. Fig. 5a
has a clear light diagonal, enabling the attacker to correlate the cache
misses with the victim access pattern. In contrast, Fig. 5b does not
show a similar pattern, and thus it is a demonstration that our secure
cache design could mitigate cache side-channel attacks.

D. Performance

We test the performance of our design with different cache con-
figurations shown in Table I, where the size and set associativity
of the L1 cache vary. The traditional cache scheme with the same
configuration serves as our baseline, and our secure cache design with
the randomized L1 and L2 caches compares with it. Fig. 6 shows the
performance overhead of our design, and each bar represents the
relative performance slowdown compared to the baseline. The result
shows that the overall performance of the secure cache is slightly
lower than the traditional cache, with an average of 13.4% overhead
across all configurations. Among all configurations, the 2-way 8KB
cache has the worst performance degradation, which might be a
result of cache thrashing. Apart from that specific case, the average
overhead is 10.7%. It should also be noted that as a result of the low
frequency of FPGA, the UnixBench result would be low in terms of
the performance index, which may influence the resulting overhead.

For each test case in UnixBench, the overall trends remain for
separate configurations, while the impacts of applying our secure
cache design are different. In specific scenarios, however, our pro-
posed cache design can even boost the performance. For example,

4



0 10 20 30 40 50 60
victim

0
10

20
30

40
50

60
sp

y

0

4

8

12

16

20

(a) Traditional cache

0 10 20 30 40 50 60
victim

0
10

20
30

40
50

60
sp

y

40
44
48
52
56
60
64
68
72
76
80
84
88
92
96
100

(b) Secure cache

Fig. 5. Result for security testing.

Dhry
sto

ne
 2 

us
ing

 re
gis

ter
 va

ria
ble

s
Dou

ble
-P

rec
isi

on
 W

he
tst

on
e

Exe
cl 

Thro
ug

hp
ut

Fil
e C

op
y 1

02
4 b

ufs
ize

 20
00

 m
ax

blo
ck

s
Fil

e C
op

y 2
56

 bu
fsi

ze
 50

0 m
ax

blo
ck

s
Fil

e C
op

y 4
09

6 b
ufs

ize
 80

00
 m

ax
blo

ck
s

Pip
e T

hro
ug

hp
ut

Pip
e-b

ase
d C

on
tex

t S
witc

hin
g

Pr
oc

ess
 C

rea
tio

n

Sh
ell

 Sc
rip

ts 
(1 

co
nc

urr
en

t)

Sh
ell

 Sc
rip

ts 
(8 

co
nc

urr
en

t)

Sy
ste

m C
all

 O
ve

rhe
ad

Sy
ste

m B
en

ch
mark

s I
nd

ex
 Sc

ore

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Pe
rf

or
m

an
ce

 S
lo

w
do

w
n

Config
size=4KB, way=2
size=8KB, way=2
size=16KB, way=2
size=4KB, way=4
size=8KB, way=4
size=16KB, way=4

Fig. 6. Performance overhead of Unixbench.

for the 4-way cache with the size of 16 KB, its performance on
File Copy 4096 bufsize 8000 maxblocks is 18% better
than the baseline.

E. Resource Utilization and Power Consumption

We use Xilinx Vivado to evaluate the resource utilization and
power consumption of H2Cache. On Xilinx FPGAs, slice LUTs
and slice registers are basic building blocks. They correspond to the
combinational logic usage and the sequential logic consumption in
digital circuits accordingly. It is worth mentioning that both slice
LUTs and registers can be proportionally mapped to ASIC gates [30].

Fig. 7 and 8 show our design’s utilization of slice LUTs and slice
registers. For the L1 cache, it requires fewer slice LUTs and slice
registers with smaller cache size configurations, while more on larger
caches. Besides, 4-way associative cache configurations have lower
overheads compared to the 2-way ones. The reason is that using
virtual index registers would simplify part of cache control logic, but

requires more registers to save them. For the L2 cache, the slice LUTs
and the slice registers are heavily required for our design, because
calculating the QARMA function would require a large amount of
combinational and sequential logic. The overall average overheads of
the two resource types are 9.5% and 19.6% respectively.

Fig. 9 illustrates the power consumption of our design. The result
shows that our design would not introduce much power consumption
to the system, with an average of 10% overhead. The L1 cache
would even consume less power under some configurations. The
L2 cache module consumes more power because of the QARMA
cryptographic function as well.

V. CURRENT LIMITATIONS AND FUTURE WORKS

Our current design is based on a single-core processor with a
two-level cache hierarchy, which may represent a common design
in an embedded system. However, in a modern processor with
higher efficiency demands, there would be more processors with

5



Total L2 cache L1 cache
0.0

0.5

1.0

1.5

2.0

Sl
ic

e 
LU

Ts
 U

til
iz

at
io

n 
O

ve
rh

ea
d

Config
size=4KB, way=2
size=8KB, way=2
size=16KB, way=2
size=4KB, way=4
size=8KB, way=4
size=16KB, way=4

Fig. 7. Utilization of slice LUTs.

Total L2 cache L1 cache
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Sl
ic

e 
R

eg
is

te
rs

 U
til

iz
at

io
n 

O
ve

rh
ea

d

Config
size=4KB, way=2
size=8KB, way=2
size=16KB, way=2
size=4KB, way=4
size=8KB, way=4
size=16KB, way=4

Fig. 8. Utilization of slice registers.

Total L2 cache L1 cache
0.0

0.5

1.0

1.5

2.0

2.5

Po
w

er
 C

on
su

m
pt

io
n 

O
ve

rh
ea

d

Config
size=4KB, way=2
size=8KB, way=2
size=16KB, way=2
size=4KB, way=4
size=8KB, way=4
size=16KB, way=4

Fig. 9. Power consumption.

more complex topologies, which is out of this work’s scope. Our
design may also be tailored and optimized for specific hardware
environments with various requirements. To extend our work to a
multi-core system with a shared last-level cache, we need to consider
the necessary modifications to the cache coherence protocol when
applying our randomization strategies. This may, in turn, require some
changes to the whole cache hierarchy.

Besides, the interactions between different levels of caches could
be exploited more extensively as well. Our work has shown that the
deployment of a randomization mechanism in the upper-level caches
would strengthen the security of the cache modules in the lower
level. Applying a more comprehensive and unified approach to the
whole cache hierarchy can harden the security and even reduce the
overall performance overhead. For example, the lower-level cache
modules could utilize the randomization information from the upper-
level caches to complicate the cache mapping. However, to implement
such a mechanism, one should also consider the cache coherence
problem within the same level of modules, as well as the lookup

and replacement policies. Meanwhile, this additional feature may
complicate the control logic in the cache system as well, which would
incur higher performance and utilization overhead.

Our work is based on the RISC-V architecture but has not fully
utilized possible RISC-V features for cache security. We may aid our
randomization design with features like virtual memory management,
PMP, memory fence, or other features for isolation and cache
operations. These features would strengthen the security guarantees
of the design without the need to modify the upper software.

VI. RELATED WORK

Our work uses cache randomization techniques to mitigate cache
side-channel attacks, which can be categorized into the table-based
approach and the computation-based approach. The table-based ap-
proach needs a lookup table to translate from the address to the
cache set index. RPcache [15] uses a permutation table to randomize
the index mappings. Newcache [16] uses a similar indirect mapping
as in our work, but it may still suffer from cache side-channel
attacks. Random Fill Cache [17] places the cache block within
a neighboring region and thus provides higher randomness. The
computation-based approach uses a hashing function to calculate the
cache set index. CEASER [18] uses the LLBC-encrypted address
within the module and decrypts the address to make requests to
other modules. CEASER-S [19] adds the skewed cache design based
on CEASER. ScatterCache [20] randomizes both index and way
selection. These techniques mainly apply to the last-level caches
as the hashing function may require several cycles of computation,
which is not acceptable for the upper-level caches. Besides, previous
works mainly use simulators to implement and evaluate their design,
while our design is implemented in RTL and evaluated on the FPGA
platform, which is more practical and convincing.

Cache partitioning is another approach to prevent cache side-
channel attacks. It divides the cache storage into separate regions
and allocates them to different processes, which isolates the target
program from the attacker. One previous work [31] proposes a
partitioned cache design targeting block ciphers. Another work [32]
uses cache partitioning based on page coloring, and DAWG [33]
provides stronger isolation with a notion of protection domains.
These techniques offer strong security guarantees but may have high
performance overhead due to hardware constraints.

In the RISC-V community, many works have been done to prevent
cache side-channel attacks. One work [34] on the issue applies cache
randomization methods to cache modules, but our hybrid approach
can provide better security guarantee and performance. Besides, a
RISC-V task group is working on Cache Management Operations
[35], which can assist the prevention of cache side-channel attacks.

VII. CONCLUSION

In this paper, we propose a hybrid randomization design on the
whole cache hierarchy and implement H2Cache to mitigate cache
side-channel attacks. H2Cache uses a hybrid table-based random-
ization and computation-based randomization for different levels in
the cache hierarchy. It works on our self-design processor and its
security is demonstrated via a quantitative analysis and attack testing.
The extensive evaluation also includes performance and resource
utilization. The results have shown that H2Cache is efficient and
has minimal overhead.

6



REFERENCES

[1] M. Lipp, M. Schwarz, D. Gruss, T. Prescher, W. Haas, A. Fogh, J. Horn,
S. Mangard, P. Kocher, D. Genkin, Y. Yarom, and M. Hamburg,
“Meltdown: Reading kernel memory from user space,” in 27th
USENIX Security Symposium (USENIX Security 18). Baltimore, MD:
USENIX Association, Aug. 2018, pp. 973–990. [Online]. Available:
https://www.usenix.org/conference/usenixsecurity18/presentation/lipp

[2] P. Kocher, J. Horn, A. Fogh, D. Genkin, D. Gruss, W. Haas, M. Hamburg,
M. Lipp, S. Mangard, T. Prescher, M. Schwarz, and Y. Yarom, “Spectre
attacks: Exploiting speculative execution,” in 2019 IEEE Symposium on
Security and Privacy. IEEE, 2019, pp. 1–19.

[3] T. Ristenpart, E. Tromer, H. Shacham, and S. Savage, “Hey, you, get
off of my cloud: Exploring information leakage in third-party compute
clouds,” in Proceedings of the 16th ACM Conference on Computer
and Communications Security, ser. CCS ’09. New York, NY, USA:
Association for Computing Machinery, 2009, p. 199–212. [Online].
Available: https://doi.org/10.1145/1653662.1653687

[4] F. Liu, Y. Yarom, Q. Ge, G. Heiser, and R. B. Lee, “Last-level cache
side-channel attacks are practical,” in 2015 IEEE Symposium on Security
and Privacy. IEEE, May 2015, pp. 605–622.

[5] R. Spreitzer and T. Plos, “On the applicability of time-driven cache
attacks on mobile devices,” in Network and System Security, J. Lopez,
X. Huang, and R. Sandhu, Eds. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2013, pp. 656–662.

[6] X. Zhang, Y. Xiao, and Y. Zhang, “Return-oriented flush-reload side
channels on ARM and their implications for android devices,” in
Proceedings of the 2016 ACM SIGSAC Conference on Computer
and Communications Security, ser. CCS ’16. New York, NY, USA:
Association for Computing Machinery, 2016, p. 858–870. [Online].
Available: https://doi.org/10.1145/2976749.2978360

[7] D. J. Bernstein, “Cache-timing attacks on AES,” 2005.
[8] D. A. Osvik, A. Shamir, and E. Tromer, “Cache attacks and counter-

measures: The case of AES,” in Topics in Cryptology – CT-RSA 2006,
D. Pointcheval, Ed. Berlin, Heidelberg: Springer Berlin Heidelberg,
2006, pp. 1–20.

[9] P. C. Kocher, “Timing attacks on implementations of diffie-hellman,
RSA, DSS, and other systems,” in Advances in Cryptology — CRYPTO
’96, N. Koblitz, Ed. Berlin, Heidelberg: Springer Berlin Heidelberg,
1996, pp. 104–113.

[10] O. Aciiçmez, “Yet another microarchitectural attack: Exploiting i-
cache,” in Proceedings of the 2007 ACM Workshop on Computer
Security Architecture, ser. CSAW ’07. New York, NY, USA:
Association for Computing Machinery, 2007, p. 11–18. [Online].
Available: https://doi.org/10.1145/1314466.1314469

[11] D. Gruss, C. Maurice, A. Fogh, M. Lipp, and S. Mangard,
“Prefetch side-channel attacks: Bypassing SMAP and kernel ASLR,”
in Proceedings of the 2016 ACM SIGSAC Conference on Computer
and Communications Security, ser. CCS ’16. New York, NY, USA:
Association for Computing Machinery, 2016, p. 368–379. [Online].
Available: https://doi.org/10.1145/2976749.2978356

[12] D. J. Bernstein, T. Lange, and P. Schwabe, “The security impact of a
new cryptographic library,” in Progress in Cryptology – LATINCRYPT
2012, A. Hevia and G. Neven, Eds. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2012, pp. 159–176.

[13] E. Käsper and P. Schwabe, “Faster and timing-attack resistant aes-
gcm,” in Cryptographic Hardware and Embedded Systems - CHES
2009, C. Clavier and K. Gaj, Eds. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2009, pp. 1–17.

[14] B. C. Vattikonda, S. Das, and H. Shacham, “Eliminating fine grained
timers in xen,” in Proceedings of the 3rd ACM Workshop on Cloud
Computing Security Workshop, ser. CCSW ’11. New York, NY,
USA: Association for Computing Machinery, 2011, p. 41–46. [Online].
Available: https://doi.org/10.1145/2046660.2046671

[15] Z. Wang and R. B. Lee, “New cache designs for thwarting software
cache-based side channel attacks,” in Proceedings of the 34th Annual
International Symposium on Computer Architecture, ser. ISCA ’07.
New York, NY, USA: Association for Computing Machinery, 2007, p.
494–505. [Online]. Available: https://doi.org/10.1145/1250662.1250723

[16] ——, “A novel cache architecture with enhanced performance
and security,” in Proceedings of the 41st Annual IEEE/ACM
International Symposium on Microarchitecture, ser. MICRO ’41.
USA: IEEE Computer Society, 2008, p. 83–93. [Online]. Available:
https://doi.org/10.1109/MICRO.2008.4771781

[17] F. Liu and R. B. Lee, “Random fill cache architecture,” in
Proceedings of the 47th Annual IEEE/ACM International Symposium
on Microarchitecture, ser. MICRO ’47. USA: IEEE Computer Society,
2014, p. 203–215. [Online]. Available: https://doi.org/10.1109/MICRO.
2014.28

[18] M. K. Qureshi, “CEASER: Mitigating conflict-based cache attacks
via encrypted-address and remapping,” in Proceedings of the 51st
Annual IEEE/ACM International Symposium on Microarchitecture, ser.
MICRO ’51. IEEE Press, 2018, p. 775–787. [Online]. Available:
https://doi.org/10.1109/MICRO.2018.00068

[19] ——, “New attacks and defense for encrypted-address cache,” in
Proceedings of the 46th International Symposium on Computer
Architecture, ser. ISCA ’19. New York, NY, USA: Association
for Computing Machinery, 2019, p. 360–371. [Online]. Available:
https://doi.org/10.1145/3307650.3322246

[20] M. Werner, T. Unterluggauer, L. Giner, M. Schwarz, D. Gruss,
and S. Mangard, “Scattercache: Thwarting cache attacks via cache
set randomization,” in 28th USENIX Security Symposium (USENIX
Security 19). Santa Clara, CA: USENIX Association, Aug. 2019,
pp. 675–692. [Online]. Available: https://www.usenix.org/conference/
usenixsecurity19/presentation/werner

[21] A. Waterman, Y. Lee, D. A. Patterson, and K. Asanović, “The
RISC-V instruction set manual, volume I: User-level isa, version
2.0,” EECS Department, University of California, Berkeley, Tech.
Rep. UCB/EECS-2014-54, May 2014. [Online]. Available: http:
//www2.eecs.berkeley.edu/Pubs/TechRpts/2014/EECS-2014-54.html

[22] A. Waterman, Y. Lee, R. Avizienis, D. A. Patterson, and K. Asanović,
“The RISC-V instruction set manual volume II: Privileged architecture
version 1.9,” EECS Department, University of California, Berkeley,
Tech. Rep. UCB/EECS-2016-129, Jul 2016. [Online]. Available: http:
//www2.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-129.html

[23] A. Gonzalez, B. Korpan, J. Zhao, E. Younis, and K. Asanovic, “Repli-
cating and mitigating spectre attacks on an open source RISC-V mi-
croarchitecture,” in Third Workshop on Computer Architecture Research
with RISC-V (CARRV 2019), 2019.

[24] A. Gonzalez, B. Korpan, E. Younis, and J. Zhao, “Spectrum: Classifying,
replicating and mitigating spectre attacks on a speculating risc-v mi-
croarchitecture,” 2019. [Online]. Available: https://people.eecs.berkeley.
edu/∼kubitron/courses/cs262a-F18/projects/reports/project4 report.pdf

[25] A.-T. Le, B.-A. Dao, K. Suzaki, and C.-K. Pham, “Experiment on
replication of side channel attack via cache of RISC-V berkeley out-of-
order machine (BOOM) implemented on FPGA,” in Fourth Workshop
on Computer Architecture Research with RISC-V (CARRV 2020), 2020.

[26] M. Spjuth, M. Karlsson, and E. Hagersten, “Skewed caches from
a low-power perspective,” in Proceedings of the 2nd Conference on
Computing Frontiers, ser. CF ’05. New York, NY, USA: Association
for Computing Machinery, 2005, p. 152–160. [Online]. Available:
https://doi.org/10.1145/1062261.1062289

[27] R. Avanzi, “The QARMA block cipher family. almost MDS matrices
over rings with zero divisors, nearly symmetric even-mansour construc-
tions with non-involutory central rounds, and search heuristics for low-
latency s-boxes,” IACR Transactions on Symmetric Cryptology, pp. 4–44,
2017.

[28] K. Lucas, “Kdlucas/byte-unixbench.” [Online]. Available: https://github.
com/kdlucas/byte-unixbench

[29] “Debian – The Universal Operating System.” [Online]. Available:
https://www.debian.org/

[30] “7 series FPGAs configurable logic block,” https://www.xilinx.com/
support/documentation/user guides/ug474 7Series CLB.pdf, 2016.

[31] D. Page, “Partitioned cache architecture as a side-channel defence
mechanism,” 2005, page@cs.bris.ac.uk 13017 received 22 Aug 2005.
[Online]. Available: http://eprint.iacr.org/2005/280

[32] H. Raj, R. Nathuji, A. Singh, and P. England, “Resource management
for isolation enhanced cloud services,” in Proceedings of the 2009 ACM
Workshop on Cloud Computing Security, ser. CCSW ’09. New York,
NY, USA: Association for Computing Machinery, 2009, p. 77–84.
[Online]. Available: https://doi.org/10.1145/1655008.1655019

[33] V. Kiriansky, I. Lebedev, S. Amarasinghe, S. Devadas, and J. Emer,
“DAWG: A defense against cache timing attacks in speculative
execution processors,” in Proceedings of the 51st Annual IEEE/ACM
International Symposium on Microarchitecture, ser. MICRO ’51. IEEE
Press, 2018, p. 974–987. [Online]. Available: https://doi.org/10.1109/
MICRO.2018.00083

7

https://www.usenix.org/conference/usenixsecurity18/presentation/lipp
https://doi.org/10.1145/1653662.1653687
https://doi.org/10.1145/2976749.2978360
https://doi.org/10.1145/1314466.1314469
https://doi.org/10.1145/2976749.2978356
https://doi.org/10.1145/2046660.2046671
https://doi.org/10.1145/1250662.1250723
https://doi.org/10.1109/MICRO.2008.4771781
https://doi.org/10.1109/MICRO.2014.28
https://doi.org/10.1109/MICRO.2014.28
https://doi.org/10.1109/MICRO.2018.00068
https://doi.org/10.1145/3307650.3322246
https://www.usenix.org/conference/usenixsecurity19/presentation/werner
https://www.usenix.org/conference/usenixsecurity19/presentation/werner
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2014/EECS-2014-54.html
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2014/EECS-2014-54.html
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-129.html
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-129.html
https://people.eecs.berkeley.edu/~kubitron/courses/cs262a-F18/projects/reports/project4_report.pdf
https://people.eecs.berkeley.edu/~kubitron/courses/cs262a-F18/projects/reports/project4_report.pdf
https://doi.org/10.1145/1062261.1062289
https://github.com/kdlucas/byte-unixbench
https://github.com/kdlucas/byte-unixbench
https://www.debian.org/
https://www.xilinx.com/support/documentation/user_guides/ug474_7Series_CLB.pdf
https://www.xilinx.com/support/documentation/user_guides/ug474_7Series_CLB.pdf
http://eprint.iacr.org/2005/280
https://doi.org/10.1145/1655008.1655019
https://doi.org/10.1109/MICRO.2018.00083
https://doi.org/10.1109/MICRO.2018.00083


[34] M. Doblas, I.-V. Kostalabros, M. Moreto Planas, and C. Hernández Luz,
“Enabling hardware randomization across the cache hierarchy in linux-
class processors,” in Fourth Workshop on Computer Architecture Re-
search with RISC-V (CARRV 2020), 2020, pp. 1–7.

[35] “Riscv/riscv-CMOs,” RISC-V. [Online]. Available: https://github.com/
riscv/riscv-CMOs

8

https://github.com/riscv/riscv-CMOs
https://github.com/riscv/riscv-CMOs

	Introduction
	Threat Model
	Cache Side-channel Attacks
	Assumption
	Requirement

	Design and Implementation
	Overview
	Table-Based Randomization for L1 Cache in H2Cache
	Computation-Based Randomization for L2 Cache in H2Cache
	Skewed Cache in H2Cache

	Evaluation
	Environment Setup
	Security Analysis
	Security Testing
	Performance
	Resource Utilization and Power Consumption

	Current Limitations and Future Works
	Related Work
	Conclusion
	References

