
Buffer Overflow

Yajin Zhou (http://yajin.org)

Zhejiang University

Credits: SEEDLab

http://www.cis.syr.edu/~wedu/seed/

http://yajin.org
http://www.cis.syr.edu/~wedu/seed/

Program Memory Layout

• Text segment: executable code of

the program

• Data segment: static/global

variables that are initialized

• BSS: uninitialized static/global

variables

• Heap: space for dynamic memory

• Stack: local variables, return

address, arguments …

Program Memory Layout

Stack Layout

Stack Layout

• When func() is called, a block of

memory will be allocated on top of

the stack.

• Arguments: passed to the function.

Reverse order

• Return address

• Previous stack frame pointer (ebp)

• Local variables

Frame Pointer

• Why do we need stack frame pointer: to access local variables

• Local variables: stack frame pointer plus offset

• Stack frame pointer is set during runtime

x = a + b

Previous Frame Pointer

• The frame pointer of previous function is stored on the stack

• Main -> foo -> bar

String Copy

• Strcpy will stop when it encounters the terminating character \0

A Vulnerable Program

• The copied string will overflow the buffer – buffer overflow

A Vulnerable Program

• Consequence: the buffer will overwrite the return address!

• case I: the overwritten return address is invalid -> crash (why?)

• Case II: the overwritten return address is valid but in kernel space

• Case III: the overwritten return address is valid, but points to data

• Case IV: the overwritten return address happens to be a valid one

How to Exploit: Vulnerable program

stack.c

How to Exploit

How to Exploit

• First, we need to put malicious code into the memory – we put them

into the “badfile”

• Second, we need to force the program jump to our code – which has

been copied into the memory. – overwrite the return address

Experiments: Prepare environment

• Download the seedlab ubuntu 16.04 (32 bit vm)

• Disable ASLR

Compile the Vulnerable Program

• -z execstack: make the stack executable, since our shell code will be

on the stack

• -fno-stack-protector: close stack guard

First the address of shell code

• How to find the address of our shell code, which has been copied

into the memory (on the stack)

• Option I: brute force: 2^32

• Option II: be smart based on observations

• the stack is usually starting from a fixed location

Improving chances of Guessing

• Add NOP instructions -> create multiple entries for malicious code

Find the Address Using GDB

Ebp = 0xbfffeaf8

Return address =

ebp + 4

First nop: ebp + 8

Buffer to ebp: 108

Buffer to return

address: 108 +4

=112

Construct the input file

Exploit

Exploit

• First, we do not use 0xbffff188 +8 as the entry point (why?)

• That mean is obtained through gdb, which may be a little different

from real value.

• Second, 0xbffff1888 + nnn cannot contain 0

Shellcode

• Eax: 11. execve system call number

• Ebx: address of command

• Ecx: address of argv[]. Argv[0] -> “/bin/sh”, argv[1]= 0

• Edx: environment variables. Could be null

Shellcode: Step I

Shellcode: Step II

Shellcode: Step III and IV

Defenses

• Secure library with safer functions

• Strcpy -> strncpy, Sprintf -> snprintf

• Safer dynamic link library:libsafe

• Static analysis

• Compiler:

• stack shield – shadow stack, Stack Guard

• OS: ASLR

• Hardware: NX bit – non executable stack

ASLR

ASLR: brute force

• Entropy: 32bit machine, stack 19 bits, heap 13 bits

• Brute force

Stack Guard

Stack Guard:

• Canary should be random

• /dev/urandom

• The canary value should not be on the stack

• Gs section -- TLS

